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ABSTRACT

The problem of blind source separation (BSS) is a one which occurs in a

variety of different applications. For example, electrical readings of the brain can

be separated by type using a BSS algorithm. This can help to isolate specific

signals and dramatically increase the effectiveness of signal analysis in such

applications. There are a variety of BSS algorithms available to us today. The

most popular three are the joint approximation and diagonalization (JADE)

(Cardoso, 1993), Infomax (Bell, 1995), and FastICA (Hyvärinen, 1999)

algorithms.

This thesis is concerned with the field programmable gate array (FPGA)

hardware implementation and output comparison of two common BSS

algorithms: FastICA and JADE. While these algorithms can currently be used in

many practical applications with real sampled data, this approach is potentially

slow and inefficient. A proper hardware implementation of a BSS algorithm

leads to speed, efficiency, and convenience. While some BSS algorithms have

been implemented previously on hardware platforms, there is still research to be

done to confirm the effacacy of existing implementations or explore new

implementations. Many of the hardware implementations simulate the

algorithms at a low-level, but do not actually implement and test the hardware

with live signals. Hardware implementations of both the JADE and FastICA

algorithms, and their analysis are presented in the remainder of this thesis.
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CHAPTER 1

INTRODUCTION

1.1 Background

In almost any area of scientific research we commonly encounter cases in

which we are unable to decipher sampled data due to signal noise or

cross-interference from adjacent sources. Many methods have been employed to

remove undesired interference such as adaptive noise cancellation (ANC),

beamforming (elucidated in section 1.4), or blind source separation (BSS). A

couple example applications include separation of a fetus’s heartbeat from the

mother’s or separation of electromagnetic signals sampled through an array of

antennas.

ANC removes noise from a signal based on second order information,

beamforming allows one to isolate different signals based on directionality, and

BSS separates out statistically independent components from a set of incoming

signals. In this paper we will focus on the implementation of independent

component analysis (ICA) algorithms and their application to BSS.

1.1.1 Blind Source Separation

BSS is a technique for separating sources given different linear mixtures of

those sources without prior knowledge about how those sources were mixed.

Each mixture is referred to as an observation, and the mixing process is

modelled using a matrix transformation.

1



A great example to illustrate the mixing process is the cocktail party

problem. Consider a cocktail party taking place in a large room. If we place

several microphones at various locations around the room, each one will get a

different combination of unique voices or sounds within the room. If the

recording from one of these microphones was played back to a person, it is

unlikely that the listener would be able to distinguish what any unique voice in

the recording is saying because it is a mixture of so many different voices. The

samples captured by one of these microphones is considered to be an observation

while the set of sampled data is considered to be a set of observations.

Mathematically speaking, the incoming data is represented as an array

where the columns correspond to data points and the rows correspond to

different source signals. The mixing process then is carried out as a matrix

multiplication between the incoming data matrix and the mixing model matrix,

where the rows of the mixing matrix represent a different combination of the set

of signal sources. Other details of BSS will be discussed in later chapters.

In general, BSS can extract as many sources or independent components

as there are observations; if there are three observations (mixtures of sources),

then a maximum of three sources can be extracted. Another limitation of BSS is

that observations must be separated based on statistical information only, which

can be less effective in contrast to beamforming which uses information about

the data capture system.

Beneath BSS we have many different sub-categories or techniques. These

include but are not limited to the following: principal component analysis

(PCA), ICA, and stationary subspace analysis (SSA). PCA algorithms effectively

orthogonalize, or de-correlate, the set of observations. ICA algorithms, which

commonly use PCA as a pre-processing stage, separate the sources into additive

sub-components. It should also be noted that ICA algorithms can separate out,

at most, one Gaussian source, and the rest should be non-Gaussian. SSA

algorithms separate the set of observations into stationary and non-stationary
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sub-components.

1.1.2 Independent Component Analysis

As our focus is the implementation of ICA algorithms applied to BSS, we

elucidate the relationship between the two. ICA takes the set of observed signals

and calculates a transformation which maximizes the independence of each

source. The transformation is output as a matrix (referred to as a separating

matrix) which is the theoretical inverse of the matrix used to model the mixing

process. The outcome of ICA is used to calculate the outcome of BSS. Figure 1.1

illustrates the relationship between BSS and ICA for the case of two

observations.

Figure 1.1: Relationship between ICA and BSS in terms of
matrix math.

The class of ICA algorithms is itself vast. At the top level we can

categorize algorithms as those which focus on convolutive mixtures of

observations or those which focus on linear mixtures. For our research we focus

on algorithms which assume a linear mixing model.

Among the linear-assumption ICA algorithms more than 15 different

algorithms have been proposed. Of all the possible algorithms, three stand out

as the most popular; the FastICA algorithm proposed by Hyvärinen in 1999 [1],

the Joint Approximation and Diagonalization of Eigenmatrices (JADE)

algorithm proposed by Cardoso and Souloumiac in 1993 [2], and the Infomax

algorithm proposed by Bell and Sejnowski in 1995 [3]. Between the three, JADE
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is best suited for a hardware implementation due the parallel nature of the

algorithm. The other two are iterative in nature and show similarly reliable ICA

results, but to limit the scope of this paper we select the FastICA algorithm to

be used in a comparative study of the hardware implementations.

The FastICA algorithm was selected because of its popularity and

because it exhibits high performance with very simple calculations, while the

JADE algorithm was selected because, while it shows great performance in

simulation, many have not attempted to implement it on hardware due to

computational complexity. Many hardware implementations of the FastICA

algorithm are available for comparison with our implementation, while not many

implementations of the JADE algorithm are available which opens the grounds

for a proof of feasibility implementation.

A proof of feasibility of Field Programmable Gate Array (FPGA)

implementation of FastICA has been done for masters level thesis work in [4] and

[5]. In this thesis a proof of feasibility of implementation of the JADE algorithm

is presented along with another pipelined implementation of the FastICA

algorithm. In contrast to Behera [4] and Taha [5] who stop their research at

hardware simulation, both ICA algorithms presented in this thesis were

physically implemented on an FPGA, and tested with real lab-generated analog

signals.

1.2 Field Programmable Gate Arrays

An FPGA is a device which can be programmed with different digital

circuits by developers after the chip has been manufactured. This is different

from application specific integrated circuits (ASICs) in that an FPGA is not

limited by the original design. Instead, an FPGA can be programmed for one

function, and then re-programmed at a later time for another. FPGA devices are

extremely fast, can be application-optimized, and are easily reprogrammed

making them the perfect devices for high speed digital signal processing (DSP)

4



applications.

Another device similar to an FPGA is a Complex Programmable Logic

Device (CPLD). A CPLD has a different internal makeup than an FPGA, but is

used in a very similar way. Another major difference between the two is that

CPLDs retain their configuration when the power is disconnected. FPGAs are

volatile in that they lose their configured programming as soon as power is lost.

The average FPGA can hold a significantly larger design than the average CPLD

and can potentially operate at much higher speeds. The main reason we use an

FPGA for our implementation instead of a CPLD is because of the advantages of

larger available design space and faster operating speed.

FPGAs consist of three basic elements: logic cells, IO blocks, and

interconnects. Logic cells hold the programmable logic. Each logic cell includes a

manufacturer-specified number of look-up tables (LUT) and flip-flops. Sometimes

FPGA resources are also reported in terms of logic slices or configurable logic

blocks (CLBs) which consist of two logic cells and four logic cells respectively.

When a design which is written in a hardware description language such

as Verilog or VHDL undergoes synthesis, a process analogous to compiling in

higher level programming languages, a bit-stream is generated. This bit-stream

can be programmed into the specified type of FPGA and can then be run in a

real-world electrical system.

One attribute of note about FPGAs is that their programmed memory is

volatile. This means that any design loaded into an FPGA is lost whenever the

FPGA loses power. In many cases configuration memory is also included on the

FPGA board which allows the design to be re-programmed upon restoration of

power.

1.3 Motivation

FPGA designs are intrinsically parallel, allowing for complex

computations to be carried out in a very short time. By designing a program
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correctly, one can maximize the amount of calculation occurring in parallel,

therefore maximizing the speed at which the processing is carried out. Because

of the high computational cost of ICA algorithms, we selected an FPGA as the

target hardware implementation platform to reap the benefits of high speed,

parallel computation.

1.3.1 Application

As stated previously, one of the main motivations for this research is the

many different areas in which BSS can be applicable. Aside from the two

examples of separating a fetus and mother’s heartbeat and separating

electromagnetic signals captured by an array of antennas, there are a multitude

of useful applications. Another example is the separation of different audio

signals sampled from an array of microphones. Having a clean fetus’s heartbeat

help give medical professionals more accurately detect issues with the fetus’s

condition. Extracting unique electromagnetic signatures from samples collected

by an array of antennas can improve the efficacy of radar systems, opening

potential military applications. Separation of audio sources has application in

many sub-areas such as in the music industry or in espionage.

These three examples are a dramatically insignificant portion of the

possibilities. BSS can be used in any situation where the extraction of

statistically independent patterns is useful. Another very interesting application

of note is the applicability of BSS in compression algorithms. One can increase

the periodicity of a set of signals to improve the efficacy of existing compression

algorithms which intrinsically rely on repetitive patterns within the data which

is being compressed. One such compression method that could benefit from

pre-processing with BSS is the Lempel-Ziv-Welch algorithm.

Several practical examples also exist which demonstrate the use of BSS in

a real-world system. In [6] the authors apply BSS techniques in cochlear

implants to improve test subjects’ ability to recognize speech in a noisy
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environment. To test recognition, a set of phonetically balanced sentences from

the IEEE database were used. A talker would read selected sentences aloud in

the presence of another selected sentence read by another talker deemed the

masker. Their experiments showed an improvement of speech recognition after

processing using BSS.

A document titled “Applications of Independent Component Analysis” [7]

presents a compilation of many different applications of ICA. Topics range from

improvement of current cell-phone technology to use of ICA in decision tree

implementation. There are a total of 20 different authors and five articles on

different applications of ICA.

Another important note when considering the application of BSS is the

number of incoming sources or observations that the algorithm will be

processing. Some applications work with fewer than 5 signals while other

applications may require an algorithm which can process as many as 40 or 50

signals. Implementations can be adjusted accordingly to maximize speed or

minimize hardware resource usage.

1.3.2 BSS History

One of the earliest methods of BSS, proposed in 1986 by Jutten and

Herault, used neural networks [8]. This method is called the Neuromimetic

Method, and was further elucidated upon in 1991 by Jutten and Herault , and

also in 1991 by Comon [9], in 1992 by Cichocki and Meszczynski [10], and in

1993 by Karhunen and Joutsensalo [11]. Neuromimetic Methods attempt to

capture the powerful visual processing capabilities of neural networks.

In 1990, just four years after the proposed Neuromimetic Method, Gaeta

and Lacoume proposed a Maximum Likelihood Estimation approach to the

problem of source separation [12]. Another two years after that in 1992, Becker

and Hinton [13], and Linsker [14], in two separate papers, proposed another

method which was based on Information Theory. This method is similar to an
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idea proposed by Horace Barlow in 1961. In his study of the nervous system of

frogs he proposed that the purpose of the visual system is to reduce redundancy

in the information entering a frogs eye. In a sense, the information theoretic

method pursues this same idea with the exception that it can be applied to

non-visual signals as well if necessary.

The concept of ICA was first proposed by Comon in 1994 [15]. While this

was not the birth of the concept itself, it assigned a title to the existing concept.

The JADE algorithm proposed by Cardoso and Souloumiac in 1993 [2] is a type

of ICA algorithm although the title, ICA, had not necessarily come into common

use. In 1995, Bell and Sejnowski proposed their Infomax algorithm [3]. Following

that, in 1997, a generalized ICA learning rule was derived by Pearlmutter and

Parra from the maximum likelihood estimation (MLE) [16]. Improving on this in

1996 and 1997, the learning rule was optimized for relative and natural gradient

cases. Finally, in 1999, the wildly popular FastICA fixed-point algorithm was

proposed by Hyvärinen [1].

The history of BSS in DSP applications goes back much further, even as

far as the 1960s. However, the brief history above includes the major highlights

leading towards the development of the two algorithms which we will be focusing

on in the rest of this thesis: JADE and FastICA.

1.4 Related Fields

Some related fields of research include beamforming and ANC.

Mathematically speaking, BSS achieves the same goals as beamforming, the only

difference being that in BSS, information about the data capture system is not

known nor is it used.

Beamforming aims to separate out independent sources from signal

capture systems such as microphone or antenna arrays using information about

the capture points. For example, in a two microphone system, if an audio signal

is detected first at one microphone and then the other, we know that the source
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is located closer to the first microphone. Beamforming is widely used in military

applications to selectively tune into different electromagnetic sources.

In contrast to beamforming, BSS operates solely on the statistical

information found within the observations. No information about the location of

the capture points is used by the algorithm.

When applying BSS to noise cancellation, the algorithm may be in

competition with ANC algorithms. The main difference between the two is that

ANC de-correlates noise from signals, operating on second order statistics, while

BSS achieves separation using fourth order statistics. In terms of separation

quality, BSS will remove noise from a signal with much higher accuracy, but this

is at the cost of computational time and complexity. To put this into

perspective, an ANC algorithm can require more than five times fewer resources

when implemented on an FPGA than a BSS algorithm designed for the same

purpose. It should be noted however that BSS algorithms have the ability to

separate out more than one signal simultaneously whereas ANC algorithms are

limited to decorrelation of one signal from another, the output result being one

‘cleaned’ signal.

1.5 Research Objectives

This research has several main objectives as follows:

1. Investigate optimizations for software versions of the ICA algorithms.

2. Apply hardware-efficient architectures and optimizations in the FPGA

implementation of both algorithms.

3. Implement algorithms on an Artix-7 XC7A100T FPGA, interface with an

ADC/DAC pair, and test with real-time lab-generated analog inputs.

4. Develop a way to numerically compare software and hardware algorithms

with each other.
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In achieving these goals, we will be paving the way for future work to

improve on the hardware implementations developed through this project.

Improvements include implementation of the same algorithms using different

contrast functions (functions which generate a measure of error between inputs)

or expanding the implementations to handle a larger number of input signals.

The latter is an area of particular focus as the complexity of processing increases

drastically with a larger number of input sources thereby slowing down

algorithm operation and requiring more hardware resources which may not be

available in such large quantities in an appropriately priced FPGA.

1.6 Thesis Organization

This thesis is organized into seven chapters. The second chapter includes

more detailed information on BSS, ICA, and both algorithms. Chapter three

presents the software versions of both algorithms followed by hardware

implementations in chapter four. Chapters five and six present simulation and

hardware results respectively. Finally in chapter seven we end with a conclusion

and a discussion about future work.
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CHAPTER 2

BLIND SOURCE SEPARATION

2.1 The BSS System

The BSS system can be split into three processes and four data sets. We

begin with the input data, followed by the input chain or mixing system which

generates the sample observations. These observations are then centered and

whitened to generate our whitened observations which are used in the separating

process. It is at this stage that the ICA algorithms come into play to generate

the final data set, the estimated sources based on the whitened observations.

Figure 2.1 is a graphical representation of the BSS system. Each of the four data

sets are plotted as graphs, and each process is depicted between the data sets.

Figure 2.1: BSS System Overview

2.2 Matrix Math

Recall matrix multiplication. It is helpful in understanding the ICA

algorithms if one is able to think easily in terms of matrix mathematics. The
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following is an example of a matrix transformation:

x(t) = A× s(t) (2.4)

a11 a12

a21 a22

×
s1(1) s1(2) . . . s1(T )

s2(1) s2(2) . . . s2(T )

 =

x1(1) x1(2) . . . x1(T )

x2(1) x2(2) . . . x2(T )

 (2.1)

The matrix A of dimension [2× 2] transforms the matrix s of dimension

[2× T ] into matrix x of dimension [2× T ]. Mathematically speaking, each term

in x is calculated based on the terms in A and s by the following equations:

x1(t) = a11 × s1(t) + a12 × s2(t) (2.2)

x2(t) = a21 × s1(t) + a22 × s2(t) (2.3)

For higher dimensions the same pattern is used. Recalling the

relationship between matrices when carrying out matrix multiplications will help

one understand both ICA algorithms and the model by which the BSS problem

is described. Matrix multiplication is also another area for improvement in our

hardware implementation. We are able to apply systolic arrays, homogeneous

networks of interconnected processors, to reduce the amount of internal resources

requred to perform expensive matrix calculations. Doing so removes the need to

2.3 The Mixing Model

The mixing model for which the JADE and FastICA algorithms were

designed is a linear instantaneous mixture. This means we are assuming all

sources are the same propagation time-distance away from the sampling

apparatus, and that the mixed sample signals are each a different linear

combination of the source signals. In a mathematical sense, the mixing model
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can be written as follows:

x(t) = A× s(t) (2.4)

Where n is the number of sources, T is the number of samples to be

processed, the x(t) term is a [n× T ] matrix holding the outputs of the mixing

process, A is an [n× n] matrix representing the mixing process (referred to as

the mixing matrix), and s(t) is a [n× T ] matrix containing the points of the

original signals. In many BSS applications, the linear assumption holds true

since the actual delay between signals is negligible. For example, in an audio

signal separation case, the signals received by two or more different microphones

will have negligible propagation delay, except in the unlikely case in which the

microphones are physically separated by a significant distance.

Figure 2.2: BSS Block Diagram

It may be easier to understand the mixing model given Figure 2.2. Person

one and person two have their own unique voice referred to, in this case, as a

source and denoted by s1 and s2 respectively. The elements of the mixing matrix

A each represent a unique data path and are multiplied by the appropriate

source to simulate the effects of each propagation path. Following this, each
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post-propagation source is added to simulate how a microphone would capture

both sources simultaneously. The sum of the post-propagation sources generates

an observation denoted using xi. Finally, the observations x1 and x2 are used in

an ICA algorithm to estimate the inverse of the mixing matrix A−1 in the form

of a separating matrix V which is used to separate out the original sources from

the set of observations.

2.4 Pre-Processing (Centering and Whitening)

Depending on the contrast function being used by the ICA algorithm, it

may be necessary to carry out some pre-processing on the dataset.

Pre-processing typically includes centering and whitening. Within the context of

figure 2.2 the pre-processing happens occurs in the beginning part of the BSS

block.

A signal is considered centered when the average of the signal over a

given set of samples is equivalent to zero. Centering is carried out on each

individual observation. To center the observation, simply subtract the

observation sample average is subtracted from each observation sample. By

doing this, the mathematical average of the signal will become equivalent to

zero. In electrical terms this is equivalent to removing the DC component and

leaving only the AC component.

Whitening a signal involves de-correlating the set of observations with

respect to each other. The mathematical effect of the whitening processes is that

the covariance matrix of the set of observations will be equivalent to the identity

matrix. Whitening can be done by way of eigenvalue decomposition (EVD) on

the sample covariance matrix. Transforming the set of observations by the

resulting eigenvector matrix generates the whitened observations. The purpose

of whitening in ICA is to ensure that each observation is treated equally by the

ICA algorithm [17].
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2.5 Contrast Functions and Mathematical Background

There are several different contrast functions which are used as bases for

different ICA algorithms. The two of importance to us at this point are based on

negentropy (used by FastICA) [1] and fourth-order statistics (used by JADE) [2].

Negentropy methods operate on the differential entropy of random

variables as a measure of non-gaussianity. Given a set of variables of equivalent

variance, the most gaussian variable will have the largest entropy. Therefore, a

gaussian variable (generated by a gaussian source) will have a larger entropy

than variables which contain information. The larger the entropy, the more

random the variable, and the less likely it is that information is contained within

the corresponding signal. FastICA takes the converse of the entropy (the

negentropy) and tries to maximize that value. By maximizing the negentropy

the gaussianity is minimized and the information is maximized resulting in a set

of information-containing variables. These are our source signals.

Methods which are based on fourth-order statistics rely on approximate

joint diagonalization techniques. Essentially, another contrast function is used on

the fourth-order contrast function of choice. In the case of the JADE algorithm,

cumulants are used as the contrast function. Cumulants are a measure of the

interaction between variables. Another term for cumulants is the connected

correlation. The fourth-order cumulant matrix is calculated first, then jointly

approximately diagonalized. As a second-order cumulant matrix is of dimension

n× n, the fourth order cumulant matrix is of dimension n× n× n× n.

Therefore there are n2 matrices of dimension n× n within the fourth-order

cumulant matrix which are jointly diagonalized to generate the separating

matrix (of dimension n× n). This process is analogous to the whitening process.

See Appendix A for more information about cumulants.

For the JADE algorithm used in the FPGA implementation, the

Frobenius norm formulation was used as the contrast function. Future work may

explore other contrast functions.
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The negentropy method is applied to a fixed-point type algorithm by

Hyvärinen [1]. A weight vector (the row or column within the separating matrix

which corresponds to the source of interest) is selected to be iterated upon and a

formula using any sort of moment-generating (non-quadratic, non-linear)

function is applied at each iteration. Depending on certain conditions the weight

vector will eventually converge to a solution which represents the coefficients

required to extract a signal. The unique signal to be extracted from the set of

observed signals is calculated via a weighted sum where the weights are the

elements of the now-converged weight vector. This is in the case of the

deflationary version of the FastICA algorithm as opposed to the symmetric one.

The deflationary approach separates sources one-by-one, decorrelating the set of

remaining sources as each unique source is separated. The symmetric approach

separates sources simultaneously, similarly to the JADE algorithm.

2.6 BSS and ICA

While this thesis aims at implementing ICA algorithms, the purpose of

those ICA algorithms is BSS. The relationship between the two is simple, but

may be confusing since much of the literature refers to them interchangeably. In

terms of definition, ICA aims to estimate the inverse of the system by which the

observations were generated, while BSS is the technique by which the

observations are decomposed back into the set of original sources.

Mathematically speaking, the output of ICA is an estimated n× n matrix, while

the output of BSS is a n× T matrix, where n is the number of sources, and T is

the number of samples processed.
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CHAPTER 3

ALGORITHMS AND SOFTWARE

3.1 FastICA

Proposed by Hyvärinen in 1999 in his paper titled “Fast and robust

fixed-point algorithms for independent component analysis” [1], the FastICA

algorithm quickly rose in popularity due to excellent performance characteristics

and computational simplicity. FastICA is a fixed-point type algorithm meaning

it is an iterative algorithm. In each iteration of the algorithm, a weight vector or

matrix is updated based on Hyvärninen’s proposed update equation. In the

deflationary approach, vectors or columns of the separating matrix are calculated

individually while in the symmetric approach all may be calculated

simultaneously. For this thesis we focus on the deflationary approach.

As mentioned earlier, FastICA operates on a negentropy contrast

function. The negentropy is calculated using any non-linear, non-quadratic

function and the first and second derivatives of that function. According to

Hyvärinen, a couple good functions to use are:

f(u) = log(cosh(u)) (3.1)

or

f(u) = − exp(−u2/2) (3.2)

The first and second derivatives of f(u) are denoted g(u) and g′(u)
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respectively. For our specific test cases, we choose the following function:

f(u) = −e(−a2u2/2) (3.3)

Taking the first and second derivatives of this function gives us:

g(u) =
1

a2
e(−a2u

2/2) (3.4)

and

g′(u) = u · e(−a2u2/2) (3.5)

The FastICA algorithm can be broken into four basic steps. These steps

involve a weight update and normalization function which are as follows:

w+ = E{x · g(wTx)} − E{g′(wTx)} · w (3.6)

and

w∗ =
w+

‖w+‖
(3.7)

The steps for the FastICA algorithm are outlined below:

First Initialize the weight vector w

Second w+ = E{x · g(wTx)} − E{g′(wTx)} · w 3.6

• g(u) = 1
a2
e(−a2u

2/2) 3.4

• g′(u) = u · e(−a2u2/2) 3.5

Third w∗ = w+

‖w+‖ 3.7

Fourth Check convergence and return to 2 if convergence conditions have not

been met
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To check for convergence we take the last weight vector w and compare it

with the new estimate w∗. If it hasn’t changed, or has only changed a negligible

amount, then convergence has been reached.

3.2 JADE

The JADE algorithm was originally proposed by Cardoso and Souloumiac

in 1993 in a paper titled “Blind Beamforming for non-Gaussian Signals” [2].

This algorithm operates on the sample fourth-order cumulant matrix of

dimension n× n× n× n, jointly approximately diagonalizing the set of n× n

symmetric matrices of which the fourth-order cumulant matrix is comprised. To

better understand how the algorithm works, it is useful to visualize the cumulant

matrix. Figure 3.1 is a three-dimensional representation of the four-dimensional

cumulant matrix of order n = 2. In this case the JADE algorithm carries out a

diagonalization on the 2× 2 sub-slices, or sub-matrices, in a manner that

approximates the optimum diagonalization across all of the slices. More

information about cumulants can be found in Appendix A.

Figure 3.1: Fourth-order cumulant matrix for
2-observation case (n = 2)
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The joint approximate diagonalization method used by the algorithm we

will focus on in this thesis is based on the Frobenius norm formulation. The

diagonalization process involves jointly approximately diagonalizing component

2× 2 matrices in a Jacobi iteration pattern over the set of component matrices

of dimension n× n. In each case, the Frobenius norm formulation is used to

diagonalize across all of the n2 component matrices. The result of the joint

approximate diagonalization is a matrix V referred to as the separating matrix

which is of dimension n× n and which is a linear matrix transform by which the

set of observations may be separated into a set of statistically independent

components. This method of diagonalization is actually a type of QR

factorization algorithm.

One result of the use of the Jacobi iteration scheme is that for a

two-source, two-observation case the joint approximate diagonalization needs to

run only one iteration for effective output. However, in increasingly larger cases,

the diagonalization takes a correspondingly larger number of iterations to

achieve convergence to an accurate diagonalization.

It should also be noted that this method requires the update of the

cumulant matrix on which the diagonalization is operating as well as an update

of the separating matrix V after each iteration. This adds to the computational

load because each iteration is then burdened with extra overhead calculations.

3.3 Whitening

Whitening is a preprocessing step required by both the FastICA and

JADE algorithms in which the set of n observations is orthogonalized with

respect to each other. To accomplish this, we first calculate the covariance

matrix of the set of observations. We then carry out eigenvalue decomposition

(EVD) on the covariance matrix. The resulting eigenvector matrix is a linear

matrix transform which whitens the set of signals from which the covariance

matrix was calculated. The mathematical effect of this is that the covariance
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matrix of the transformed set is equivalent to the identity matrix of dimension

n× n. This indicates that the set of transformed observations is de-correlated.

Whitening is another form of BSS; one which falls under the category of

PCA. While PCA has been used to improve existing technologies, we still focus

on researching ICA because the result of PCA does not necessarily return signals

which resemble the original sources. Instead ICA algorithms, which maximize

the non-Gaussianity of the separated sources must be used. Figure 3.2 shows the

output of PCA and ICA both carried out on the same set of observations

generated from a sinusoid and a square wave. In the far left columns are

observation 1 and observation 2, in the middle column are the set of outputs

after processing using PCA, and in the far right column are the separated

sources after processing using ICA. Notice that the PCA output does not

resemble a sine and square wave, but the ICA output does.

Figure 3.2: PCA vs. ICA

For ICA, whitening is paramount because the process ensures that all the

observations are treated equally by the ICA algorithm. If they are treated

unequally the result is a set of signals that do not resemble the original sources.

For purposes of comparison we use the same whitening algorithm as a
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preprocessing stage for both the FastICA and JADE algorithms.

3.4 Number Representation

There are two basic ways to represent numbers in a computer; fixed and

floating point notation. Most personal computers are currently designed to use

floating point notation because of the exceptional dynamic range. This is, of

course, at the cost of uneven precision at different numerical ranges. Fixed point

notation is commonly used in FPGA designs because when designed properly a

fixed point system will run at a faster speed and require fewer resources. The

following are some examples of fixed point representation of example decimal

numbers:

• 54.7510 = 110110.112

• 19.62510 = 1011.1012

• 3.141510 = 11.0010010000111 . . .2

Recall that in binary, each digit represents a value equivalent to 2i where

i is the digit’s position relative to the decimal point, and where the decimal

point is located between digit positions i = 0 and i = −1. If one requires the use

of large numbers, then many digits to the left of the decimal point should be

used. Alternatively, if one requires the use of very small precision numbers, then

many digits to the right of the decimal point should be used. The effective

dynamic range and precision of floating point numbers is limited by the most

significant bit and least significant bit respectively.

Floating point representation is more complicated in that the number is

actually encoded further to allow for storage of a wider range of numbers with

fewer bits. Floating point consists of a sign bit, an exponent, and a mantissa

(also known as a significand). As an example we will consider the IEEE 754

single precision format.

22



The exponent and mantissa are defined with widths of 8-bits and 24-bits

respectively. The 8 exponent bits store the exponent in excess-127 offset binary

form meaning that the value of the exponent is calculated by subtracting 127

from the number represented by the 8-bits. This allows the exponent to hold any

value between −128 and 127 which allows for a larger dynamic range centered

about one. The mantissa is stored with a hidden most significant bit so that only

23 bits are actually required for storage. The decimal point of the mantissa is

located between the hidden bit and the leftmost bit of the stored mantissa.

Figure 3.3 depicts a single precision number and its equivalent decimal value to

the right. Bits are ordered from 31 to 0 inclusively so that 32 bits in total are

used. Single precision numbers are popular because they naturally fit with

instruction widths of 32-bit computer architectures.

Figure 3.3: Floating Point Numbers

For our software algorithms we use the IEEE 754 single precision

standard format because mathematical functions are already designed for

32-bits. The same notation is used in our hardware algorithms as well for the

purpose of comparison.
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CHAPTER 4

HARDWARE IMPLEMENTATION

4.1 Platform

When selecting a hardware platform on which to develop a high speed

algorithm a few options rise to the top as the fastest and most cost-effective:

Digital Signal Processors (DSPs), Field Programmable Gate Arrays /

Application Specific Integrated Circuits (FPGAs / ASICs), and newer high

speed computer architectures. For this project an FPGA was selected because of

its intrinsically concurrent architecture along with the advantage of

cost-effectiveness.

Specifically, the Artix-7 XC7A100T FPGA (Picture in Figure 4.1) by

Xilinx was used via a Nexsys 4 FPGA development board from Digilent. The

Nexsys4 FPGA development platform is packaged with many different

peripherals, all built into the board itself and tied into dedicated pins on the

FPGA, but for convenience and to handle high speed analog to digital

conversion operations, a dedicated ADC/DAC combination was used. The ADC

is packaged as the Pmod AD1 by Digilent which uses an AD7476 12-bit ADC,

while the DAC is packaged as the Pmod DA2, also by Digilent, and uses a

DAC121S101 12-bit DAC.

Analog circuitry (Picture in Figure 4.2) was also built to interface lab

equipment such as signal generators, oscilloscopes, or microphones with the ADC

and DAC. Simple low-noise operational amplifier circuits handled signal offset,
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Figure 4.1: The Artix 7 FPGA board that was used

which entailed centering our incoming signals in the range of 0 to 3.3 Volts.

Mixing circuits were also added to allow variable analog mixing of the incoming

signals if necessary.
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Figure 4.2: Circuit hardware used to generate mixed signals
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4.1.1 Hardware Considerations

Three main issues arise when considering a hardware implementation of

any algorithm. The first is how to take full advantage of the concurrent

capabilities of an FPGA. This can be done by careful design of the hardware

system. One such design pattern is a pipelined design in which the different

hardware modules execute concurrently such that data can flow continuously

through the entire system. The second is the amount of hardware space used by

the algorithm chosen. This can be reduced by converting sections of the

algorithm to fixed point or changing basic block strategies. For example, the

attributes of a multiplier module/block may be adjusted to select a tradeoff

between speed and resource usage. The third is the accuracy of numerical

calculations. Many advanced algorithms require the calculation of higher order

functions such as the exponential function or hyperbolic tangent (as in the case

of the FastICA algorithm). These can be calculated using equivalent functions or

approximations.

4.2 Algorithm Development

In the early stages of research, the development of algorithms entailed

coding using the ieee proposed numerical library, which is to be included

officially in the VHDL-2008 standard, for access to fixed and floating point

number functions. While the library is excellent for simulation purposes, it

requires certain VHDL variable types which causes it to be impractical for

real-life implementation. This is due to the fact that many large companies such

as Xilinx do not fully support VHDL-2008 in their software products yet. Due to

this fact, it became necessary to switch to a block coding scheme. This entailed

the use of the Xilinx IP cores or custom modules designed for sub-sections of the

algorithms, and resulted in a procedure for developing algorithms on FPGA

platforms. The procedure is as follows:
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1. Replace high order functions within the algorithm with low-order versions.

This brings the algorithm closer to a block diagram level.

2. Draw out a block diagram version of the algorithm as well as sub-functions

of the algorithm to be used as sub-modules in the final design.

3. Calculate delay on each line as necessary for pipelining.

4. Test sub-modules with pre-calculated input and output sets.

5. Integrate sub-modules into final design and do system tests.

6. Debug as necessary.

The procedure described, while being very generic, is a useful process in

the development of complex algorithms on FPGAs. Without having a pre-defined

procedure, the development process for larger, more complex algorithms can

become stagnant and lose momentum very quickly. The advantages of having a

pre-defined procedure include improving communication and progress tracking

between members of a team and the speeding up of development time.

4.3 FastICA

We begin implementing the FastICA algorithm by examining the

procedures within the different steps of the algorithm. Four procedures are

identified: estimation of the new weight vector, decorrelation, normalization, and

check for convergence. All these procedures are repeated in each iteration so the

hardware designed for one iteration can be re-used by adjusting the inputs to the

processing chain. The re-use of hardware can be thought of similarly to a basic

funnel. One can pour water through it and later re-use it for oil or any other sort

of fluid. The structure of the processing chain, analogous to the funnel, remains

the same while the data being applied at the inputs of the chain, analogous to

the fluid flowing through the funnel, changes at each iteration.
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4.3.1 Estimation

Estimation of a new weight vector is based off the update equation

proposed by Hyvärninen [1]. This update equation uses the first and second

derivatives of a non-quadratic, non-linear function denoted g(u) and g′(u)

respectively. The update equation is defined as:

w+ = E{x · g(wTx)} − E{g′(wTx)} · w (3.6)

For our hardware implementation, we use the function f(u) = −e(−u2/2).

The first and second derivatives of this function are defined as:

g(u) =
1

a2
e(−a2u

2/2) (3.4)

g′(u) = u · e(−a2u2/2) (3.5)

This function is selected because the exponential function recurs in the

derivatives. Because of this, both g(u) and g′(u) employ the same term e((−u
2)/2).

This allows us to implement only one function, the exponential function, and use

that same function for both g(u) and g′(u).

Within the estimation procedure, we develop a basic sub-module designed

to calculate both g(u) and g′(u). A block diagram of this module can be found

in Appendix C. This module must iterate over the entire dataset of T samples

during each iteration. Because of this, the FastICA algorithm tends to be slow in

terms of data throughput especially if the number of samples is large. The slower

speed of separation is of course in stark contrast with the low amount of

resources required.

There are two different iterations occurring; one which is carried out over

the samples during each of the other iteration which occurs for each weight

vector. The first iteration processing chain is implemented using the specially

designed function block and accumulators to hold the running calculation of the
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expected values [E
{
xg(wTx)

}
] and [E

{
g′(wTx)

}
]. After the first iteration has

completed processing over the entire set of samples, the updated weight can be

calculated and the higher level iteration can continue to the decorrelation,

normalization, and convergence check procedures.

4.3.2 Decorrelation

Decorrelation of the estimated weight vector is necessary to ensure that

the same component source is not extracted from the set of observations more

than once. Each new estimate is decorrelated with respect to every other

completed estimate using the following function.

w+
p = w+

p −
p−1∑
j=1

wj(w
+
p )Twj (4.1)

This is a Gram-Schmidt-like decorrelation scheme. We take the weight

vector w+
p which corresponds to the current signal being estimated, and remove

from it any information which is also contained within previously estimated

weight vectors. To carry this operation out, we take each previous weight vector

wj, project our estimate of interest w+
p along that vector, and subtract the result

from our estimate of interest. The decorrelation hardware is another short

iteration pattern which accumulates the sum term and then subtracts it from the

estimate using a hardware subtractor. This process is relatively simple and does

not cost much time or many hardware resources.

4.3.3 Normalization

Normalization is also a relatively simple process. This is implemented

using fixed size set of function blocks, although re-use of hardware can also be

applied here if necessary. The normalization formula is written as follows:

w∗ =
w+

‖w+‖
(3.7)
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The main issue with this stage is that it involves a reciprocal square root

operation which is very expensive in terms of processing time and hardware

resources. The sum of the squares of the elements of our estimated weight vector

w+ is calculated. That value is then processed through a module designed to

calculate the reciprocal square root to give us the quantity [ 1
‖w+‖ ] which can then

be multiplied with our weight vector w+ to obtain a normalized vector estimate

w∗. This new normalized estimate is compared with the last version of the

weight vector from which the estimate was calculated to check for convergence.

4.3.4 Convergence and Control

Convergence of an iteration is achieved when the weight vector estimate

has not changed since the last iteration. We apply a threshold limit on the sum

of the absolute differences between corresponding elements of the two vectors

being compared. If the sum is less than the threshold, then convergence has been

reached, otherwise we must repeat the iteration to gain a better estimate. The

hardware design of this system involves subtractors, adders, absolute value

modules, and a comparison module.

After each weight vector has converged, the module-level controller

switches the multiplexed inputs for the next vector. When all of the weight

vectors have converged, the control system sends a signal to the system-level

controller which uses the newly calculated weight vectors to separate out the

source estimates from the whitened observations.

4.4 JADE

In the case of the JADE algorithm, processing can be decomposed into

two basic stages. First is the calculation of the fourth-order cumulant matrix

from the set of whitened observations. Second is the joint approximate

diagonalization of the set of symmetric matrices of which the fourth-order

cumulant matrix is composed. The result of the diagonalization process is a
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matrix which is used as the separating matrix.

4.4.1 Cumulants Calculation

For calculation of the fourth-order cumulants, we use a simple iteration

over each of the four dimensions of size n. For the two-observation case we

hard-code the cumulant calculation for speed and to remove all redundant

calculations. This is alright since the number of unique cumulants in this case is

only 5.

It should be noted that the number of unique cumulants increases

drastically with the number of observations n. One can calculate the number of

unique cumulants in a given fourth-order cumulant matrix using the following

formula:

(3 + n)!

24× (n− 1)!
(4.2)

Another more intuitive way to calculate the number of unique cumulants

is the following summation:

n∑
i=1

n−i+1∑
j=1

i× j (4.3)

This method of calculating the number of unique cumulants is more

intuitive because it calculates based on all the unique combinations of our n

observations. If the number of unique cumulants is plotted over different values

of n, the result is as in the graph below. Appendix A includes information about

how the unique cumulants are distributed in the fourth-order n× n× n× n

matrix.

It is clear that the number of unique cumulants rises too fast for us to

naively hard-code the entire cumulant calculation block for any value of n, the

number of input observations. For example, the 10-observation case results in

715 unique cumulants to be calculated. This will clearly require an entirely
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Figure 4.3: Unique Cumulants given Observations

inefficient amount of hardware resources. Because of this, it is necessary to alter

the basic structure of the cumulants calculation code for larger and larger

numbers of sources. It is possible to re-use the hardware used for calculating

different cumulants in repeating passes. Although it will take much longer to

calculate this, the effect will be to reduce hardware space requirements, making

it possible to implement the larger algorithms on a hardware platform.

One compromise of hardware space to calculation speed requires (n+1)n
2

different cumulant calculators. These are iterated over (n+1)n
2

times. For the

10-observation case this means we need 55 different cumulant calculators going

through 55 iterations instead of 710 calculators going through one iteration. This

is a significant improvement, however it is still quite a large number of required

resources. Another compromise of hardware space to calculation speed would use

up to n cumulant calculators iterated over (n+1)n2

2
times. For the 10-observation

case this means we need 10 cumulant calculators going through 550 iterations.
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These are both good compromises between hardware space and processing speed.

Depending on the resources available and the requirements of the system, one

can modify the cumulant calculation stage to adjust required resources and

processing speed.

Future research may serve to make the cumulant calculation massively

symmetrical as many of the calculations do share multiplications. Once the set

of symmetric fourth-order cumulant matrices is calculated we move onto the

actual joint approximate diagonalization stage.

4.4.2 Joint Approximate Diagonalization

The joint approximate diagonalization is done using a Frobenius norm

formulation between the symmetric components of the fourth-order cumulant

matrix. In the JADE algorithm proposed by Cardoso [2], a two-dimensional

sub-component joint diagonalization process using a Jacobi iteration scheme is

used. In terms of hardware resources required, this is highly efficient as only a

two-dimensional processor needs to be implemented. This two-dimension

processor is then fed different inputs to eventually complete the diagonalization

process. At each stage, the set of cumulant matrices is updated by the calculated

rotation matrices.

4.4.3 Angle Calculation

Each two-dimensional sub-matrix has a matrix angle associated with it.

This is used in the calculation of rotation matrices for use in the diagonalization

process. For example, if one were trying to rotate a two-dimensional matrix by

an angle θ, they would transform it using the following rotation matrix:

cos(θ) −sin(θ)

sin(θ) cos(θ)

 (4.4)

This type of rotation is called a Givens rotation. The effective Givens
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angle is calculated based off of a two-dimensional sub-matrix taken from the

data set which is selected based on the Jacobi rotation pattern.

4.4.4 Data Update Stage

After each angle is calculated the entire set of cumulant matrices is

updated. For each column, the data is rotated clockwise and each row is rotated

counter-clockwise by the calculated angle. This is one of the most costly

processes in the JADE algorithm as it requires multiplication across so much

different data simultaneously.

4.4.5 Systolic Array Option

In the case of the hardware algorithm, a systolic array version of the joint

approximate diagonalization algorithm can be used. This gives the hardware

excellent performance with high data throughput by maximizing the amount of

calculation carried out in parallel. A systolic array Singular Value Decomposition

(SVD) algorithm is proposed by Brent, Luk and Van Horn in [18]. This is used

as the basis of the systolic array version of the JADE algorithm.

A systolic array of processors consists of diagonal processors and

off-diagonal processors. The diagonal processors carry out angle calculation

along the diagonal elements of the matrix being processed. The angles are then

transmitted to the off-diagonal processors which rotate the other elements of the

data matrix by the calculated angles.
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Figure 4.4: Systolic Array of Processors for n = 4
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Figure 4.4 shows an example systolic array for a matrix of dimension

n = 4. P11 and P22 are both diagonal processors which carry out

two-dimensional local SVD while P12 and P21 are both off-diagonal processors.

The data within each processor is rotated by the rotation angles calculated by

the corresponding row and column pair. For example, the data in P11 would be

rotated by the angle calculated by P11 while the data in P12 would be rotated by

both the angle calculated by P11 and the angle calculated by P22. The

transformation is mathematically represented as follows.

A =

a11 a12

a21 a22

 (4.5)

Anew =

cos(θh) −sin(θh)

sin(θh) cos(θh)

× A×
 cos(θv) sin(θv)

−sin(θv) cos(θv)

 (4.6)

Where θh is the angle calculated by the diagonal processor on the same

row as the processor carrying out the rotation and θv is the angle calculated by

the diagonal processor on the same column as that processor. In the case of the

diagonal processors, both angles are the same (θh == θv). Systolic data rotations

are carried out after this transformation.

Typical convergence of this algorithm depends on a selected threshold

value. When the calculated angle is less than the threshold value, the diagonal

processors automatically assign the rotation angle as zero and automatically zero

the off-diagonal elements local to the processor. In this way, it is ensured that

eventually the off-diagonal elements will reach zero, and that the diagonal

elements converge within tolerance to the singular values.

After each iteration, which includes angle calculation and the rotational

transformations, the data in each processor is passed in a systolic rotation
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pattern based on the Jacobi rotation pattern. Each processor has data flowing in

and out. By connecting the inputs and outputs of each processor correctly, it is

easy to setup a systolic array for the purpose of joint approximate

diagonalization. One can also expand the matrix dimension being processed

easily by adding new processors along both dimensions and connecting them

appropriately.

The most intuitive way to understand this rotation pattern is by looking

at row and column rotations separately. The following diagram illustrates the

rotation pattern along a row or column for a matrix of dimension n = 8.

Figure 4.5: Jacobi rotation scheme for both columns and rows.

The matrix elements are separated in pairs as they would be in the

systolic array for processing. After each rotation stage, the elements are moved

between the systolic processors. An intuitive way to look at this process might

be to carry out this rotation on each row first, then on each column. In this way

the entire rotation process is broken down into many simpler movements.

Optimizations can be and have been made by the original authors to where the

data is instead directly transmitted in a diagonal pattern. The effect is the same,

however, the hardware setup using diagonal data flow may potentially be more

efficient. Ultimately however, when assigning inputs and outputs to the systolic

processors, the data will incidentally move diagonally. More detail about the

systolic array data algorithms can be found in Appendix A, and in [19] and [18].

Also included in Appendix A are example figures illustrating the rotation process

for matrices of dimension n = 4 and n = 8.
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4.5 Pre-Processing

Both the JADE and FastICA algorithms share a pre-processing,

whitening and centering stage. Centering was implemented through the external

hardware by removing all DC components and then adding back an exact DC

component. Whitening was carried out using EVD on the covariance matrix

calculated from the set of sampled observations.

4.5.1 Centering

Centering can be done multiple ways. The first step is to remove any DC

components currently within the incoming analog signals. This is easily done by

running our inputs through a 1µF capacitor. This capacitor is selected and used

with the assumption that our test signals will be of a frequency composition that

will not be lost due to capacitor attenuation. With a purely AC signal, we add

1.65 volts back into the observations to center our test signals on the range of 0

to 3.3 volts. This was done two different ways in different revisions of the circuit:

using simple circuit components, and an operational amplifier based circuit. A

simple example circuit is depicted in Figure 4.6. For the operational amplifier

circuit a simple op-amp adder circuit is implemented with one of the inputs fixed

to 1.65 volts.

After sampling via the ADC, the numerical value 2048 was subtracted

from the now-digital signals. This is because our signals are digitalized to 12

bits, or on a range of 0 to 4095. The subtraction results in a digital sample in

the range of −2048 to 2047, which is converted to a floating point representation

of the sample, and scaled back to voltage by multiplying our set of signals by

3.3
4095

for processing within our ICA algorithm.

4.5.2 Whitening

Given our centered, floating point, and voltage-scaled values, we can

begin our whitening stage. First, the incoming samples are stored into internal
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Figure 4.6: Example low-noise DC offset circuit

FPGA block RAM. Concurrently to the storage process, the covariance matrix is

calculated. The covariance matrix is then sent into a systolic array version of an

eigenvalue decomposition (EVD) processor. This processor works virtually the

same way as the previously described systolic option for the JADE algorithm.

The only difference between the two algorithms is in the diagonal processors.

The angle calculation formulae are slightly different because the end goal of the

whitening process is an EVD while the end goal of the JADE algorithm is

actually a SVD.

After processing, the result is a set of eigenvalues and the corresponding

eigenvectors. Each eigenvalue corresponds to a principal component and each

eigenvector acts as a linear transformation to extract that principle component

from the set of observations. Put together in matrix form, the eigenvectors are

the whitening matrix. The set of observations, which are currently stored in

block RAM, are transformed with this whitening matrix and then stored in a

second block of RAM. The reason for using multiple sets of block RAM is that

RAM is abundant within the FPGA and using block RAM at strategic points

allows for a large-scale pipelining scheme which greatly increases the amount of

processing carried out concurrently.
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4.6 Number Representation

When implementing any algorithm on an FPGA one must consider how

the numbers will be represented. In this respect there are two possible choices;

fixed or floating point. The advantage of fixed point is low hardware resource

usage, easy programming, and fast operation. The advantage of floating point is

fixed hardware usage per data and large dynamic range. In VHDL one can

implement these number systems using std logic vectors, bit vectors, signed, or

unsigned types. For our implementation we generally use std logic vectors due to

their generic and versatile nature.

4.6.1 Fixed Point

Implementing fixed point hardware is relatively straightforward and

simple. The addition, subtraction, and multiplication circuits can be

implemented using direct hardware algorithms. Some slightly more advanced

functions must be used for division and an approximation method is used to

calculate the square root. Some cases require scaling of values which is

implemented simply by shifting our std logic vectors to the left or right.

4.6.2 Floating Point

Implementing hardware for floating point math involves much more

overhead processing and logic than fixed point. In the näıve approach the

numbers on which the operation is being carried out are converted first to fixed

point before carrying out mathematical operations. However, in many cases this

is not necessary. For example, if a very large number were added to significantly

small number, the result would be virtually equivalent to the larger number

because the small number is lost in precision error.
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4.7 Hardware Math

4.7.1 Fixed Point Math

One important consideration with the different mathematical functions is

that the size of the result of one of these operations can be different from the size

of the input vectors. For example, if we were adding two three-bit binary

numbers together, the result could potentially be a four-bit vector because of the

carry bit. Another example is the multiplication case. If we were to multiply two

three-bit binary numbers together, the result could be up to six bits wide.

Figure 4.7 is an example adder/subtractor circuit; notice that the result is

one bit larger than the input vectors given the reasonable assumption that the

input carry bit is assumed to be a logical zero. This hardware adder is used

regardless of where the binary point is located along the binary vector. As long

as the two input vectors are aligned in terms of their respective binary points,

the result will be correct.

Figure 4.8 is an example hardware multiplier circuit; notice that the

result is the same width as the sum of the widths of the input vectors. In this

hardware algorithm as well, the inputs need not be aligned, but the binary point

on the result vector should be calculated based on the binary points of the input

vectors. However, in many cases it is convenient to align the input vectors to

remove the overhead of having to calculate a new binary point.

The other basic math functions such as division and square root are

created using sub-modules. Each of these modules accepts the appropriate

inputs and outputs the calculated output. Putting these into sub-modules is

necessary because the division and square root operators do not have direct

hardware circuit implementations. The calculations for these functions must be

carried out over several clock cycles.
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Figure 4.7: 4-bit Hardware Adder Subsystem Diagram [20]

Figure 4.8: 2-bit Hardware Multiplier Diagram
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4.7.2 Floating Point Math

In contrast to implementation of fixed point math, floating point math

requires a fixed number of bits to represent each number. For example, in the

case of 32-bit floating point format, any two-number mathematical function

would accept two 32-bit numbers and return a 32-bit number. Such is also the

case if a different floating point format were used as well.

Another major difference from implementing fixed point math functions is

the relative complexity of the operations being carried out. In a floating point

adder, the numbers must first be converted to fixed point format and then added

using a large width adder. This is one major point at which an optimization can

be made. As far as the implementation of the multiplier, both significands are

multiplied, including the hidden most significant bit, and the exponents are

added together after accounting for the excess-binary coding scheme. The sign

bits can be run through an xor logic gate to generate the resulting sign.

While the multiplier is evidently relatively simple to implement in

floating point, the adder/subtractor is slightly more complicated due to the

variable width nature of operations. This can be accounted for by comparing the

exponents before-hand. For example, if one were subtracting a very small

number from a very large number, the small number may only affect the lower

bits of the large number. This can be implemented using a bit inversion scheme.

Considering a similar example using IEEE 754 single precision format, if the

difference between the exponents is larger than 24 bits, then we know that the

smaller number is located far to the right of our 24 most significant bits. If we

were to convert both numbers to a fixed point format first, only the most

significant bit of the smaller number’s significand would affect our result. We

take the significand of the larger number and look for the least significant

non-zero bit. This bit will become zero and any less significant bits will become

ones to account for the cascaded borrowed bit.

To further illustrate this example, let us subtract
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6.067912750040705× 10−8 from 2.0178651809692383. These numbers in floating

point format are 00110011100000100100111010110100 and

01000000000000010010010010110100 respectively. First we consider the signs;

since both are positive we know which order of operations we are considering.

Next we take the difference of the exponents. The exponent for the larger

number is 10000000b and the smaller exponent is 01100111b. In terms of decimal

notation these are 128 and 103 respectively. Taking the difference 128− 103

results in a difference of 25, which is larger than the width of the significands.

Therefore we can apply the bit-shift operations instead of wasting hardware

space to hold two 49-bit numbers. In applying the bit-shift operations on the

significands, we only need look at the significand for the larger number which is

equivalent to 100000010010010010110100 including the hidden bit. The least

significant ‘1’-bit is 3 bits from the right end. After applying the bit-shift scheme

the resulting significand should be 100000010010010010110011. We return this

significand along with the exponent of the larger number as the answer. To

verify the result, we convert our number back into decimal notation which is

equivalent to 2.017864942550659. This is correct if compared with the result of

carrying out the subtraction in decimal notation. One can verify this using many

online floating point adder/subtractor resources. Alternatively one can take the

numbers and perform a typecasting along with the operations to see the results

of the subtraction.

The addition and subtraction cases with both positive and negative

numbers can be summarized by Table 4.1. The first two colums are the

respective signs of the two input operands, e3 = e1 − e2, and m1 and m2 are the

respective significands or mantissas. In e3 = e1 − e2, e1 and e2 represent the

respective exponents of the operands. By taking the difference between them, we

can decide which operation should be carried out on the significands to produce

our result significand m3.

The most amount of computational savings are found in the op(mx)
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Sign #1 Sign #2 e3 ≥ 24 e3 ≤ 24 0 ≤ e3 < 24 −24 < e3 < 0

+ + + (m1) + (m2) + (m1 +m2) + (m1 +m2)

− + − op(m1) + op(m2) − (m1 −m2) + (m2 −m1)

+ − + op(m1) − op(m2) + (m1 −m2) − (m2 −m1)

− − − (m1) − (m2) − (m1 +m2) − (m1 +m2)

Table 4.1: Floating Point Adder Operations

operators. This is a simple bit shift operation whereby we shift the bits of the

input operand beginning from the least significant bit until we reach the least

significant ‘1’-bit. By doing this we effectively limit the total width fixed-point of

adder/subtractor required to calculate the result significand.

For more complex functions such as division and square root calculations

we use compound hardware. For division, a successive subtraction can be

implemented in a partially cascading format to obtain the results of division in a

timely manner. This is equivalent to long division.

For the square root function we use a simple approximation scheme. A

popular algorithm for this is the Babylonian method which is a reduced case of

Newton’s method. The hardware aims to solve the problem f(x) = x2 − S = 0

where x is our solution and S is the number of which we are finding a square

root. Ultimately this reduces to numerical form as xn+1 = 1
2
(xn + S

xn
). Each

update of xn by the formula results in a more accurate approximation for
√
S.

We can also take series approximation methods centered at different points to

improve convergence and accuracy characteristics of our algorithm.

For our hardware implementation, while these would be ways to optimize

our code, we opted to use Xilinx IP cores for the mathematical operations.

While it is important to understand the optimizations that go into hardware

implementation of floating point mathematical operators, it is not absolutely

necessary for the research detailed in this thesis, because a working
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implementation is more important than an optimal one for proving feasibility of

implementation.

4.8 Matrix Math

The basis of much of the math which is used to describe the FastICA and

JADE algorithms is matrix math. We use matrix-based mixing and separating

models as well as matrix-based models for the processing carried out in each

algorithm. To implement matrix multiplication we have two basic structure

options: systolic and direct.

4.8.1 Systolic Architecture

In the basic systolic architecture a set of n2 systolic processors is required,

each consisting of a multiplier and an accumulator. In the n = 4 case, the

processors are arranged as depicted in Figure 4.9. The inputs to the columns

and rows of this systolic array are delayed by the column and row number

respectively.

At each calculation stage, each processor accumulates another term of the

total sum of a given element of the result matrix. The values being used for

calculation in each processor are passed either horizontally or vertically to

adjacent processors after each calculation stage following the arrows shown in

Figure 4.9. A detailed stage-by-stage example of a systolic multiplication can be

found in Appendix C Section 2.

For a matrix transformation case it is necessary to read the results at

each processor in real time and store them as they become available so that the

next element, rotationally at that position, can begin processing. The rotation

scheme repeats over n columns. For each element in the data matrix, the matrix

which is to be transformed by our transformation matrix, the element is delayed

by delay = floor((c− 1)/n)× n+ r + ((c− 1) mod n) where c is the column
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Figure 4.9: Systolic Array Multiplier
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number starting at n and r is the row number counting from the bottom starting

at 1, given that the data is of dimension n× T where n is the number of

observations and T is the number of samples in the set. The elements of the

transformation matrix are rotated counter-clockwise horizontally while the

elements of the data matrix are passed down vertically with the delay given by

the equation above. It may be easier to conceptualize this in terms of a graphical

representation. Figure 4.10 depicts this rotation pattern.
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Figure 4.10: Systolic Array Transformation
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4.8.2 Direct Calculation Architecture

To implement direct calculation architecture a set of n2 multipliers and

either n2 or n× (n− 1) adders is required. Figures 4.11 and 4.12 show hardware

diagrams of row calculators for processors of dimension n = 3 and n = 6

respectively. There are n number of row calculators in any given set. Each row

calculator receives a different row of the transformation matrix A and each

subsequent column of the data matrix X. The output from a given row

calculator corresponds to the value Y at row j, column i in the output matrix.

To create a matrix multiplier from the row calculators, the values in a

row of the mixing matrix is assigned to a row calculator. The columns of the

source matrix X are then fed into the set of row calculators to generate the

columns of the output matrix Y .

Figure 4.11: Direct Row Calculator n = 3

4.8.3 Comparison

To compare different hardware architectures we consider speed and

latency, both of which are given in terms of the number of clock cycles required

to achieve solution and output. In comparison with the systolic architecture the

direct calculation architecture actually shows better performance overall. A
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Figure 4.12: Direct Row Calculator n = 6

similar amount of hardware resources are required, and equivalently fast

calculations are achieved at the cost of extra latency. This conclusion is drawn

from a detailed analysis of the hardware diagrams based on the reported latency

and speed reported after implementation of the two architectures in Xilinx ISE.

However, the latency increases at a log2 rate so is therefore not a great

factor. Another point of note about latency is that the length of samples T is

usually very large so the latency is very small compared to overall calculation

time.

As an example we consider the extreme case where n = 40. The latency

factor for the systolic architecture is calculated in the worst case scenario as

follows.

mult+ add× ceil(log2(n)) = 8 + 11× ceil(log2(40)) = 8 + 11× 6 = 74

In this equation, mult is the latency of a multiplier block (2 to 8 clock

cycles), add is the latency of an adder block (2 to 11 clock cycles), and latency

values are in terms of number of clock cycles. When referring to block speeds, we
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will refer to the high latency versions of blocks as slow-block and the low latency

versions of blocks as fast-block. Compare the direct architecture latency with the

latency of the systolic architecture processors which is mult+ accum where

accum is the latency of the accumulator. The accumulator core has a maximum

latency of 22, leading to a total worst case latency of 8 + 22 = 30 for the systolic

architecture. As far as overall calculation speed goes we use the case of T = 500.

For the direct calculation architecture overall system speed is

speeddirect = T +mult+ add× ceil(log2(n)), and for the systolic architecture the

overall system speed is speedsysto = T + 3× n− 2 +mult+ accum. For the case

of n = 40 and T = 500, the worst case, or slow-block speeds speeddirect = 574

and speedsysto = 640. The direct calculation architecture is faster even in the

slow-block case. In the fastest-case speed speeddirect = 514 and speedsysto = 622.

In either case the direct calculation architecture is faster.

Let us consider another case for comparison where n = 3 instead of 40.

Slow-block speeds are speeddirect = 530 and speedsysto = 537, and fast-block

speeds are speeddirect = 506 and speedsysto = 511. Even at a low number of

observations, the direct calculation architecture shows faster calculation speeds

than the systolic architecture. Therefore, for our implementations, any generic

matrix multiplications and transformations are implemented using the direct

calculation architecture.

It should be noted that it is possible to use the systolic array in a manner

which will decrease required hardware space by stacking columns. For instance

the width of a n = 4 array might be reduced to 2 and columns 2 and 3 would

then be stacked on top of 0 and 1 in a manner similar to the matrix transformer

in Figure 4.10. Further detail and optimization can be found in US patent

8,924,455 by Xilinx [21] which presents different configurations of systolic array

arithmetic operators. In particular, optimum versions of systolic array multipliers

are discussed. In some configurations, buffers are used to optimize the hardware

space used, while other configurations are optimized for speed of calculation.
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4.9 Pipelining

Pipelining in hardware is a design technique in which the hardware is

arranged and connected in such a way that computations are carried out in

successive steps without the need for an intermediate controller system. A

pipelined system on an FPGA is extremely fast as the latency is only a factor at

the beginning and end of the processor. Compare the data flowing through the

hardware to water flowing through a system of pipes. When you first turn on the

water, it takes some time for the water to appear at the pipe system outputs,

but from that point on the water continues to flow correctly out of the outputs

as long as the input water continues. Data flowing through a pipelined hardware

system behaves in much the same way.

For the FastICA and JADE algorithms, it is impossible to properly

pipeline the entire system without the use of some sort of concurrent processing

scheme, modifying the algorithms, or massive use of hardware space. Consider

the whitener which is common to both ICA algorithms. The whitening stage

carries out EVD on the covariance matrix to calculate the whitening matrix. In

this case it is necessary to calculate the covariance matrix before performing the

EVD, and then it is necessary to transform the set of observations by the

whitening matrix. Calculating the covariance matrix and transforming the set of

observations both require iterating over the entire set of samples, but the

covariance matrix iteration must occur before the transformation iteration.

A solution to this issue is to add another dimension to the data

movement. In the basic pipelining case, the data is moving in one dimension,

which is normally time. For example, for each sample, some sort of operation

will be carried out to produce an output at the same rate as samples are

captured and input to the system. In essence, each sample is moving along the

pipeline over time. To add another dimension of movement, each set of samples

is moved in time across different stages of the system. At each stage which

requires iteration over the entire set of samples, we use internal FPGA block
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RAM to store a version of the sample set. Each processing chain will iterate over

this different version of the data concurrently with other processing chains.

While this method costs more in terms of RAM, it is not a concern in the

general case as there is an ample amount of on-chip RAM as well as extra

on-board RAM in the unlikely event that the on-chip RAM is utilized.

4.9.1 RAM Swap Scheme

The RAM swap scheme is used when implementing a concurrent

processing system. First we analyze the entire system to identify points at which

processing chains can be established. Figure 4.13 shows a simplified block

diagram which describes our system. From this diagram we can distinguish four

core processing chains: input, whitening, ICA, and output. It is possible to

further subdivide the ICA processing chain into several more depending on the

algorithm being implemented, but at this point we will consider that as one

chain with a variable latency factor to account for differences in processing time.

For the input and output processing chains there is virtually no latency, factor

and the speed is limited only by the maximum operating speed of the ADC and

DAC respectively. For the whitening and ICA chains there are two basic latency

factors. First is the amount of time required to calculate the transformation

matrix, either the whitening or separating matrix. Second is the latency of the

transformation operation which is insignificant since this involves only one

multiplier stage and log2(n) adder stages.

Between each processing chain is a requirement of some form of

intermediate data storage buffer. By using a dual-buffered system, we can

maximize the concurrency of high latency processing, especially in the case of

the whitening and ICA chains. Another positive benefit of a dual-buffered

system is that the input and output chains can run continuously, since they are

usually limited significantly in terms of speed relative to the other processing

chains. The buffers are implemented using internal FPGA block RAM and are
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located in the system at points marked RAM in Figure 4.13.

Figure 4.13: BSS System Block Diagram

To analyze the timing of different processing chains relative to each other

and the availability of data, we consider their relative expected processing speeds

and apply certain design constraints. One such constraint to limit the amount of

analysis required is to assert that the input and output processing chains must

run continuously. In other words, the input chain must always have RAM

available to store incoming data and the output chain must always have data

available for outputting. Using a timing diagram with dependencies marked, we

can check the feasibility and expected behavior of our system with regard to

times at which different processing chains will run relative to each other.

Figures 4.14 and 4.15 show two different versions of the timing diagram

for our system. In terms of our processing chains, input and output have their

own timing columns, whitening consists of the whitener and corresponding

transformation, and ICA consists of the ICA and corresponding transformation.

The black arrows represent process or sub-module run-times while the gray

arrows represent dependencies. The process pointed to by a gray arrow cannot

begin operation until the process from which the arrow originates has completed

its calculations. Figure 4.14 is the synchronous diagram in which each chain is

synchronized relative to a fixed-time input chain. On the right in figure 4.15 is

an asynchronous run-when-ready diagram which we call the greedy diagram

because it runs under the premise of running as soon as possible, being greedy in

terms of time. Both diagrams begin with the assumption that the system has

just been started. At first, only the input chain runs, then when that initial data
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Figure 4.14: Synchronous
Timing with Dependencies

Figure 4.15: Greedy Timing
with Dependencies
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is captured, it begins to cascade through the system along each subsequent

chain. At the same time, the RAM banks are swapped at each data junction so

that the input chain begins loading new data into the RAM which is not being

used by the subsequent chain at the moment. Doing so ensures continuous data

flow (pipelined) while lowering overall processing time. In the synchronous

diagram, the chains are set to begin their initial operation when data is available

and synchronous to the input chain. This type of diagram is useful to

understand all of the dependencies within the entire system, and to compare the

relative running times of the different chains. In the asynchronous diagram each

chain begins operation as soon as data is available and dependency conditions

are met. This type of diagram is useful to understand the most optimal system

operation, and the operation that is likely when the system is actually

implemented. In both diagrams, the timing is possible as long as the dependency

arrows are directed either horizontally or downwards.

What we see from the synchronous diagram is that the whitening and

ICA chains each must have a run-time which is less than or equal to the input

chain. This will ensure that all chains can run concurrently to each other, and

that the data flow is continuous. For our specific system, the on-board clock runs

at 100Mhz while the ADC and DAC are limited to run at 10Mhz. The ADC

and DAC are also 12-bit based on a 16-count cycle with plus one count for

resetting operation between ADC captures. This means that our whitening and

ICA processing chains are effectively running at 170 times the speed of the input

and output chains which in turn means that, except in extreme cases, we will

meet the condition that the data flow will be continuous. This effectively makes

the overall system a pipelined one.

The asynchronous diagram is the same diagram as the synchronous with

later chains shifted earlier along the timeline as far as possible while still

ensuring proper operation. The exact same dependencies are added to this

diagram to check feasibility and see how the overall system will operate. This
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diagram tells us the expected hardware system latency.

While it is possible to run certain chains across the same RAM blocks

concurrently by phasing the timing, doing so saves minimal latency and increases

system complexity significantly. This may be an area of future research,

especially if RAM becomes scarce, because a phased operation system of this

manner would use a little over half the amount of RAM used in the

dual-buffered system.

Another benefit of the concurrently buffered system is that each chain can

be tested as another sub-module. Because of this, the parent system is less

complex than a system in which chain sub-components and sub-chain control

logic are at a higher position in the module hierarchy. Using a RAM swap

scheme, we ensure overall pipelined behavior of the BSS system and reduce

development complexity.

4.10 IP Cores

Previously we discussed hardware implementations of different

mathematical operators. For our implementation we opt to use Xilinx IP cores.

This gives the advantages of versatility and access to more complex functions

without the need for writing them ourselves. Using the provided IP cores also

allows us to adjust system properties such as latency on the fly. IP cores can be

pre-compiled to speed up synthesis of the entire hardware design. We use the

floating-point IP core which has many different selectable functions built into it.

These are selectable when configuring the IP cores.

Math operations in our design are carried out using IEEE 754 single

precision 32-bit floating point number format. The floating point IP core

provides us with all of the necessary basis math functions including absolute

value, add/subtract, compare, divide, exponential, logarithm, multiply,

reciprocal, reciprocal square root, and square root. Also included is an

accumulator, fused multiply-adders, and fixed/floating point converters. These
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allow conversion between fixed and floating point as well as conversion to

different floating point formats.

For our hardware modules, we use the adder, subtractor, comparison,

divider, multiplier, square root, reciprocal square root, number format converter,

and accumulator. Each module can be adjusted in terms of latency to adjust

maximum operating speed and hardware resource usage. In many modules a

table is provided showing the expected resource usage at different latency values.

4.10.1 Data Flow

We can also adjust the control signals going into and out of our different

IP core blocks. This allows us to control how data flows. The specific

floating-point IP core block uses the AXI4-Stream control signal format which is

a commonly used, Xilinx-defined interconnect interface description. At the most

basic level, this gives us a data array output under a signal labeled ‘t data’ and a

control signal labelled ‘t valid’ which indicates when the signal currently being

asserted on ‘t data’ is technically valid data. Connecting the output ‘t valid’

signal of one block to the corresponding input on another block will cause the

child block, the block to which data is flowing in terms of pipeline hierarchy, to

process the incoming data as soon as it is available.

4.10.2 Accumulator

The accumulator is one of the most important pieces of the hardware

processor blocks. The accumulator provided in the floating-point IP core

accumulates numbers in fixed point format, but outputs in terms of floating

point. In the customization wizard we can adjust the internal precision of the

fixed point part to change resource usage and accuracy. For our hardware design,

ranges are selected to ensure that precision error due to the format conversion is

an insignificant error factor.
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4.10.3 Fixed/Float Converter

Another key function that we use is the fixed/floating point converter. In

the customization wizard we define what the input and output formats should.

For fixed point we define the most significant bit (MSB) and least significant bit

(LSB) in terms of the std logic vector indices. For floating point we define the

widths of the exponent and significand to adjust dynamic range and precision

respectively.

4.11 Hardware Resources

When it comes to FPGA hardware implementations there are several

different ways to compare different implementations of different algorithms. The

two most important are speed and amount of resources used. Another important

factor is latency, but this is less of a concern in applications which do not require

a high rate of data through-put.

4.11.1 Speed and Latency

Speed and latency in FPGA implementations are measured in terms of

clock cycles. For instance, a floating point adder synthesized using a Xilinx IP

core block will result in different speed and latency values. Increasing the latency

allows the system to run with a higher internal clock speed, but results in a

longer delay between data entering the inputs to a correct result being output.

For the adder block with non-blocking control configuration, latency values can

be anywhere between 2 and 11 clock cycles. Any value selected will still allow for

a throughput of one data point per clock cycle, but will vary the maximum clock

speed and the amount of hardware resources the core uses.

If two adders were stacked together to add three numbers in total, the

latency would have to be the sum of the latency of the two adders. The data

throughput rate is still one data point per clock cycle, but the latency will now
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be anywhere between 4 and 22 clock cycles. The same principle applies when

connected any other function blocks together. If they are arranged in parallel,

the highest latency is the system latency, and if they are arranged in series, the

system latency is the sum of the latencies of all the components. This is

important to understand for pipelining.

4.11.2 Resources

Hardware resources are measured in either Flip-Flops (FF) and Look-up

Tables (LUT), logic slices, or logic cells. Flip-Flops in the case of the 7-series

Xilinx FPGAs are all D-type Flip-Flops. When implementing using Xilinx

Vivado, part of the synthesis and implementation reports is the number of FFs

or LUTs used by each distinct type of block.

Other more specialized hardware resources are also used as comparison

measures. One such resource is a dedicated, high speed hardware multiplier

called a digital signal processing slice (DSP slice). These can be a measure of

speed in implementations of systems which are very similar to each other.

Internal FPGA RAM is also another resource that can be a comparison measure.

There are two types of FPGA RAM; block and distributed. For this project,

block RAM is used as the main data storage structure, but distributed RAM can

be used as well in cases where speed is not as important. With the Nexsys 4

board we also have on-board RAM available in case internal FPGA RAM is all

used up, but this changes the control structure and potentially results in slower

operation depending on the maximum operating speed of the RAM.
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CHAPTER 5

SOFTWARE SIMULATIONS

5.1 System Overview

The software algorithm system can be split up in a similar manner as the

overall BSS system overview in Figure 4.13. The main difference is in the RAM

blocks and capture system; Instead of sampling using a Data Acquisition (DAQ)

system, the observed signals are generated using MATLAB code. A random

mixing matrix of dimension n× n is generated to model the mixing system; this

is done randomly because we are under a blind assumption. Using the generated

mixing matrix and our generated set of source signals, we simply multiply them

using the inherent matrix multiplication ability of MATLAB to generate our set

of observations. The generated observations are then used by the different BSS

algorithms to estimate the original sources. The advantage of doing this in

software is that one can easily compare the estimates to the actual originals.

5.2 Simulations

Simulations are carried out in MATLAB. The results of the algorithms

can be compared with the generated inputs to calculate separation accuracy.

This includes mean square error (MSE) between the original sources and their

corresponding outputs and comparison of the randomly generated mixing matrix

to the estimated separating matrix, and/or the signal-to-noise ratio (SNR) of

separated signals in the case where randomly generated noise is added to the
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inputs.

Both software algorithms will be compared with each other, and

ultimately will be used in verification of the hardware algorithms. If the

hardware algorithms have the same output as the software algorithms, then we

can assume that they are correctly coded and accurate to a degree. A numerical

comparison can also be carried out between hardware and software algorithms

by extracting sample data from the hardware system directly.

All four algorithms, two hardware and two software, will also be compared

for computational speed. While it may be difficult to compare software algorithm

performance with hardware performance, the comparison will still generate

useful information; we may be able to see that one is better than the other, but

not necessarily be able to see by how much an algorithm surpasses another.

5.3 Algorithm Comparison

5.3.1 Computational Speed

When comparing computational speed of both software and hardware

algorithms, it is necessary to note the specifications of both systems.

Computational speed of software algorithms can be measured using timing

functions. For example one would measure the time at which the algorithm

began and then the time at which it finished, then take the difference between

the two times to get an estimate of the total time required for the algorithm to

complete one batch of processing. This would typically be calculated in

microseconds. To measure the computational speed of hardware algorithms, one

must count the number of hardware clock cycles required to process one batch of

data, then multiply that number by the clock speed of the hardware system.

This can be done using the hardware design diagram by counting the

pre-determined run-time of sub-elements.
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5.3.2 Mean Square Error

Mean square error is useful to see the accuracy of the estimated output

signals given the original input signals. Below is a graphical example:

Graphs titled Signal 1, Signal 2, Error, and Square Error in figure 5.1 will

be referred to as graphs a, b, c, and d respectively. Graphs a and b include plots

of two original sources (solid) and their corresponding estimates (dashed).

Graph c shows the error for both signals and graph d shows the square error for

both signals. It is important to note the scale on the error plots.

In this particular example we see that the error for each signal resembles

the other signal. This indicates to us that the error in this case is due to an

incomplete separation of the sources given mixtures of the originals. By using

the MSE as a measure of error, we can measure the degree to which the ICA

algorithm successfully completed its task.
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Figure 5.1: Mean Square Error - Graphical Example
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5.3.3 Mixing Matrix

A comparison based on the accuracy of the separating matrix would tell

us directly the accuracy of the ICA algorithms. However, when carrying out

simulation comparisons the total error between calculated separating matrices

and the randomly generated original matrix is outside the range of typical error

between two randomly generated matrices. In other words, when we do an

element-by-element subtraction between the estimated and original matrices and

then take the sum of the squares of the result of the subtractions, we typically

see a value which is within the range of typical values if we were to carry out the

same operation on two randomly generated matrices. Therefore, comparison by

mixing matrix using the sum of the square error is not a good measure of

performance. In future work it may be possible to use a different measure of

comparison between the two matrices.

5.3.4 Signal to Noise Ratio (SNR)

SNR is a useful measure by which to compare the two algorithms because

by their nature, the ICA algorithms maximize the non-gassianity of our set of

signals. The more non-gaussian a signal is, the smaller the SNR will be. SNR is

calculated using the frequency spectrum. We know that the gaussian source will

contribute a flat, evenly distributed spectrum, while the sine or square wave

signals will give us spectrums which we can predict.

5.3.5 Simulation Results

5.4 Simulation Results

Both algorithms exhibit very good results with the simulation signals.

Figure 5.2 shows the simulation output for the JADE algorithm. This is for two

signals, a sine and square wave, and is organized into three main columns. The

first two plots show the original sources, the next two plots in the center column
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Figure 5.2: Example JADE Simulation Output for a sinusoid
and square wave

Figure 5.3: Example Comparison of JADE and FastICA
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Figure 5.4: Example Comparison of JADE and FastICA

show the two observations generated by the mixing of the two original sources,

and the last two plots show the signal estimates which the JADE algorithm

produced.

Figures 5.3 and 5.4 show signal estimates produced by both the JADE

and FastICA algorithms given the same set of input observations. The general

trend seems to be that FastICA is better than JADE, but only if the sources are

separated in a specific order. For example, if the sine wave was separated first

and the square wave second, the JADE algorithm would typically have better

results. However, if the square wave is separated first, the FastICA algorithm

would typically show better results. In the average case, JADE performs with

slightly more MSE, but with less variation between simulations.
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CHAPTER 6

HARDWARE RESULTS

In this chapter we will aim to verify that our hardware algorithms

performed accurately compared to our software simulations, and to compare the

two hardware algorithms with each other based on several different metrics.

Verification of our algorithm will be by comparison of BSS outputs given the

same set of observed inputs. Comparison metrics include separation accuracy

based on MSE, speed of operation, and hardware spaced used (in the case of

hardware-to-hardware comparison).

6.1 Verification by MSE

For verification of the hardware design, we take the data stored on the

internal FPGA Block RAM and save it to a location on the computer. This data

is then parsed to a form which can be used by the simulation algorithms. After

simulations on the same set of inputs as the hardware, the outputs are compared

for similarity and separation accuracy. If both hardware and software algorithms

output similar results we have verified that the hardware algorithm operates at a

comparable accuracy to the simulation algorithms, and therefore verified that

the hardware algorithms are, in fact, separating signals correctly.

Another way to verify the FPGA design is to simulate the hardware

design. This is clearly the more desired option in many cases as a hardware test

setup is not necessary. With a test bench, we can take our hardware design and

apply a set of pre-calculated inputs, such as a simulated data stream, to see
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what the resulting output is. This method of testing very popular and is used in

many different peer reviewed articles as verification of hardware design. Test

bench simulation is an essential part of hardware design development and was

used extensively in the development process; for example, to test complex

sub-modules before integration into the main design.

Verification examples can be found in Appendix B. Figure 6.1 shows a

two-signal test case for the JADE algorithm. On the left are the set of observed

signals, in the middle are the simulation algorithm source signal estimates, and

on the right are the estimates from the hardware algorithm. Figure 6.2 shows

the same for the FastICA algorithm. The MSE between software and hardware

for the verification in Figure 6.1 is 0.0081 for source 1 and 0.0078 for source 2.

The MSE for the verification in Figure 6.2 is 0.0013 for source 1 and 0.0014 for

source 2. Because these values are technically in terms of voltage, translating

them to a real-world system shows negligible error. Based on accuracy of

separation, we have verified that both hardware algorithms work with similar

accuracy to their software counterparts, and therefore are eligible for further

testing and comparison based on other metrics.

Figure 6.1: JADE Hardware Verification Exmaple
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Software vs Hardware MSE Software MSE Hardware MSE

Source 1 0.0058178 0.00027175 0.00358

Source 2 0.0058367 2.3029× 10−05 0.0051219

Table 6.1: JADE Hardware Verification Example MSE Values

Figure 6.2: FastICA Hardware Verification Example

Software vs Hardware MSE Software MSE Hardware MSE

Source 1 1.934× 10−05 4.242× 10−06 4.1697× 10−05

Source 2 1.9545× 10−05 0.00011596 4.0289× 10−05

Table 6.2: FastICA Hardware Verification Example MSE
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6.2 Speed of Separation

Speed of separation is measured differently for the hardware and software

algorithms. For the software algorithms, internal computer clocks are used, and

for the hardware algorithms, speed of separation can be measured by directly

counting the number of clock cycles in the designed system. Another

consideration in measuring the speed of separation of software algorithms is that

the system may not have consistent run-time as the algorithm is running on top

of an operating system. As such, it is necessary to take the average of many

different runs of the same algorithm on the same set of generated inputs.

Another consideration of speed of separation is the definition of systems.

For the hardware algorithms, we may include the ADC and DAC only if we are

considering our DAQ system in the software algorithms. We should consider

comparison of the DAQ systems across both hardware and software separately

from the actual algorithms themselves. In extension, it may also be desireable to

compare the ICA algorithms separately from the shared whitening stage. By

considering the ICA algorithms by themselves, minimizing common processing

overlap, we maximize the difference between the performance of the algorithms.

To compare the ICA algorithms directly in the software algorithms we

start a timer right before the ICA algorithm begins and stop it right after it

completes. This ignores the time for whitening and other overhead tasks and

solely focuses on the ICA algorithm. Likewise for the hardware algorithms, we

simply count only the clock cycles required in the ICA algorithm sub-module.

After testing with the JADE algorithm, we saw separation speeds in

simulation of between 2 and 4 milliseconds while the hardware system has a

total counted latency of 0.8 milliseconds.

generated inputs, and the other with hardware generated inputs. Detailed

results can be found in Appendix B Section 2. Below in [figure-. . . ] is a

summary of the results. [insert stuff about computer specifications and operating

system, and about hardware system].
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Software inputs are generated using custom MATLAB functions, and

stored within text files for use in the non-MATLAB algorithms. For the

hardware algorithms, the inputs are generated using signal generators, and

mixtures are generated using simple operational amplifier-based mixing circuits.

These are the stored within the FPGA on Block RAM, and extracted using an

Arduino. The extraction process is as follows:

1. A switch on the Nexsys 4 board is set causing the system to store the latest

dataset on the different sets of Block RAM and enter into a paused state.

2. The Arduino then clocks the contents of the RAM out via digital IO pins

and sends the newly captured data to the computer via serial interface.

3. A custom program on the computer listens for data on the serial interface

and stores the incoming data in a text file at a specified location.

The extracted data is a set of binary strings representing numbers in

IEEE 754 single precision float format which must be converted by our software

algorithms and test benches before use in simulations. By storing the data as a

binary string (‘1’ and ‘0’ only), we ensure that precision is not lost between the

hardware and software algorithms, removing the factor of conversion error when

comparing software and hardware algorithms.

For the MATLAB versions of the algorithms, the software test signals are

generated within our algorithm scripts while the hardware test signals are

imported via text document. Binary strings are converted using typecasting

functions. For the hardware algorithms, we use the analog generated inputs

directly, and test the hardware algorithm with software inputs using a test

bench. While it is possible to reverse the extraction process and insert the

software-generated signals into the hardware algorithm, it is unnecessary and

extraneous as the behavior of the hardware algorithm has already been verified;

instead, we use a test bench to simulate the hardware behavior.
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6.3 Hardware Space

Hardware space comparison is only for comparison of the two hardware

algorithms with each other. Metrics to consider when performing a hardware

comparison include number of Look-Up Tables (LUT) used, number of Flip-Flops

(FF), amount of Block RAM (BRAM) used, and number of DSP slices used.

Our selected FPGA, the Artix-7 (XC7A100T), has 15,850 logic slices, each with

four 6-input LUTs and 8 FFs. By measuring the number of LUTs and FFs used

in the design, we resolve to a general idea of how many logic slices are used.

Our first hardware space comparison is for the 2-signal cases of the

hardware JADE and FastICA algorithms. Based on Xilinx Vivado synthesis and

implementation results, we list out the metrics in the following table.

JADE FastICA

DSP Slices 133(55%) 277(95%)

LUT 42, 851(68%) 31, 571(50%)

FF 65, 526(52%) 49, 972(39%)

BRAM (bits) 108, 000(2.2%) 108, 000(2.2%)

Table 6.3: Hardware Space Results

While the FastICA algorithm uses fewer LUTs and FFs, we see that the

JADE algorithm used fewer DSP slices. All of the metrics are important to an

FPGA design, but DSP slices improve speed of design greatly. As this is a much

more scarce resource, we give it more weight. Overall, it appears that the JADE

algorithm uses fewer resources to separate two sources from a set of two

observations.

The next step at this point is to compare the two algorithms given a

higher number of incoming observations. As stated previously, the size of the

fourth order cumulant matrix used in the JADE algorithm increases drastically
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with a higher number of input sources. Because of this, the JADE algorithm will

have to be re-designed to maximize re-use of hardware structures. The JADE

algorithm will generally take up more hardware space than the FastICA

algorithm which inherently re-uses hardware structures. After re-design,

however, the JADE algorithm will have very low hardware usage at the cost of

larger computation time.

The amount of hardware space used can be adjusted for each algorithm

by serializing the JADE algorithm or parallelizing the FastICA algorithm.

Serializing the JADE algorithm more decreases the hardware used by repeatedly

using the same hardware structures. Parallelizing the FastICA algorithm

increases hardware used, but improves processing speed greatly. For example the

FastICA algorithm can be set up in such a way that one structure separates two

sources directly. That structure can then be re-used to estimate sources two at a

time as opposed to one at a time. The hardware space increases, but the overall

processing time decreases.
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CHAPTER 7

CONCLUSION

The main purpose of this research was to provide a proof of feasibility for

the JADE algorithm and compare it with another hardware implementation of

the FastICA algorithm. Another goal was to explore optimizations to both the

software and hardware algorithms. Verification that these two algorithms work

correctly was done both visually and numerically.

Feasibility of implementation was used as a topic for masters theses in [5]

and [4]. In both cases, the author presents hardware simulation results, but does

not actually implement and test the implementations on a real system. In

contrast, this thesis has verified a real hardware implementation of two different

algorithms and shown comparison between the different algorithms.

A systolic architecture implementation of the JADE algorithm is proposed

and simulated. This architecture provides faster results at the cost of higher

resources used. Overall, the systolic architecture maintains a good performance

to resource ratio, increasing algorithm speed very cost-effectively. In addition,

the whitening block is also implemented using a systolic architecture which

benefits both algorithms by reducing the overhead of the pre-processing stage.

Both hardware algorithms were run on an Artix-7 XC7A100TCSG324-1

FPGA using the pmod AD1 and DA2 from Digilent. Hardware internal to the

FPGA is run at 100 Mhz while the input and output through the ADC and DAC

peripheral modules (Pmod) are limited to approximately 590 ksps due to

hardware limitations of the ADC and DAC chips themselves. Overall system
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speed is limited by the ADC and DAC maximum speed. Given this limitation

the system is still potentially highly effective for audio processing applications or

other low-frequency applications where the sources of interest have a frequency

lower than 290 khz.

A pipelined architecture is also used in the implementation of both

algorithms such that the flow of data is constant. In doing so a design technique

is also presented in which a hardware design can be broken up into different

segments referred to as processing chains to maximize the amount of parallel

computation. This effectively reduces the overall system latency.

7.1 Future Work

In general, future work will be aimed at improving the algorithms and

exploring new applications. Four-signal hardware algorithms should be

implemented, and optimizations should be tested in both the hardware as well as

the software algorithms. The software algorithms should also be implemented

using a dedicated, high speed computer interfaced with a DAQ to see how a

practical software implementation would compare with the hardware

implementations. MATLAB and C/C++ simulations should also be run on that

same computer to measure the speed of just simulation without the overhead of

a DAQ.

Different methods of diagonalization can be explored for the JADE

algorithm. For example, it may potentially be more cost-effective in terms of

hardware resources to use COordinate Rotation DIgital Computer (CORDIC)

processors in the systolic array sub-modules instead of the algebraic equivalents.

A sorting method should also be included for the post-whitening stage to

ensure a consistent order of outputs and reduce permutation ambiguity. This

would re-order our eigenvectors based on the eigenvalues.

The existing pipelining scheme can also be changed to adjust the amount

of parallel computation and required RAM. Depending on the application, speed
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or resources may become scarce, necessitating these types of adjustments.

Both algorithms should also be tested using live-captured signals such as

audio channels generated by two different speakers in the lab, captured using an

array of microphones. Software simulations should also be carried out to explore

the feasibility of application in alternative areas such as improvement of

compression algorithms. If the software shows feasibility, then the hardware can

ultimately be used for high speed DSP applications such as a high speed data

compressor which could potentially increase data transfer rates between satellites

or improve the speed of existing internet frameworks. With an FPGA

implementation, a high speed data compressor can be very useful.

Ultimately, these algorithms can be used for a wide variety of different

applications, and the design techniques developed for the implementation of

these algorithms can be used to implement other useful algorithms on FPGAs.
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APPENDIX A

1 Cumulants

Unrolling the 4-dimensional cumulant matrix into three dimensions yields

a representation that looks like the following. Figure 3.1 from Chapter 3 Section

2 shows a 2-signal case and A.1 below shows a 4-signal case.

Figure A.1: Fourth-order cumulant matrix for 4-observation
case (n = 4)
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Unrolling the 4-dimensional cumulant matrix into two dimensions yields a

representation that looks like the following. Figure A.2 shows a 2-signal case and

A.3 shows a 4-signal case.

Figure A.2: Fourth-order cumulant matrix for 2-observation
case (n = 2)
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Figure A.3: Fourth-order cumulant matrix for 4-observation
case (n = 4)
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The super-symmetric nature of the fourth-order cumulant matrices means

there are many repeated cumulants. Figures A.4 and A.5 are good ways to

visualize the quantity and location of unique cumulants for the 2 and

4-observation cases respectively. For higher numbers of observations, it is easy to

imagine what the equivalent figures would look like.

Figure A.4: Unique cumulants (bold) in the fourth-order
cumulant matrix for 2-observation case (n = 2)
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Figure A.5: Unique cumulants (bold) in the fourth-order
cumulant matrix for 4-observation case (n = 4)
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2 Jacobi/Givens Rotations

Figure A.6: Jacobi rotation pattern on a single row.

Figure A.7: Jacobi rotation pattern for rows and columns.
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Figure A.8 shows the Jacobi rotation pattern for a 4× 4 matrix. Notice

how elements are rotating in sets of three for the 4× 4 dimensional case:

{(1,2),(1,3),(1,4)}, {(2,1),(3,1),(4,1)}, {(2,2),(3,3),(4,4)}, {(2,3),(3,4),(4,2)}, and

{(3,2),(4,3),(2,4)}.

Figure A.8: Jacobi rotation pattern for a 4× 4 matrix.

Figures A.9 through A.12 show one full cycle of rotations for a 4× 4

matrix.
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Figure A.9: Jacobi rotation pattern for 4× 4 matrix at
rotations (r = 0).

Figure A.10: Jacobi rotation pattern for 4× 4 matrix at
(r = 1).
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Figure A.11: Jacobi rotation pattern for 4× 4 matrix at
(r = 2).

Figure A.12: Jacobi rotation pattern for 4× 4 matrix at
(r = 3).
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Figures A.13 through A.20 show one full cycle of rotations for a 8× 8

matrix.

Figure A.13: Jacobi rotation pattern for 8× 8 matrix at
(r = 0).
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Figure A.14: Jacobi rotation pattern for 8× 8 matrix at
(r = 1).
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Figure A.15: Jacobi rotation pattern for 8× 8 matrix at
(r = 2).
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Figure A.16: Jacobi rotation pattern for 8× 8 matrix at
(r = 3).
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Figure A.17: Jacobi rotation pattern for 8× 8 matrix at
(r = 4).
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Figure A.18: Jacobi rotation pattern for 8× 8 matrix at
(r = 5).
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Figure A.19: Jacobi rotation pattern for 8× 8 matrix at
(r = 6).
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Figure A.20: Jacobi rotation pattern for 8× 8 matrix at
(r = 7).
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APPENDIX B

1 Verification of FastICA Hardware

Figure B.1: FastICA Hardware Verification #1

Software vs Hardware MSE Software MSE Hardware MSE

Source 1 0.00010567 5.0586× 10−05 1.0038× 10−05

Source 2 0.000106 2.7341× 10−05 2.568× 10−05

Table B.1: FastICA Hardware Verification #1 MSE
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Figure B.2: FastICA Hardware Verification #2

Software vs Hardware MSE Software MSE Hardware MSE

Source 1 0.0028006 5.3028× 10−06 0.0029212

Source 2 0.0027958 0.0025614 0.011432

Table B.2: FastICA Hardware Verification #2 MSE

Figure B.3: FastICA Hardware Verification #3
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Software vs Hardware MSE Software MSE Hardware MSE

Source 1 0.0019009 0.0006417 0.0047579

Source 2 0.0019013 0.00040263 0.0040492

Table B.3: FastICA Hardware Verification #3 MSE

Figure B.4: FastICA Hardware Verification #4

Software vs Hardware MSE Software MSE Hardware MSE

Source 1 0.0011502 0.0050637 0.0013761

Source 2 0.0011503 0.0026795 0.00031914

Table B.4: FastICA Hardware Verification #4 MSE
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2 Verification of JADE Hardware

Figure B.5: JADE Hardware Verification #1

Software vs Hardware MSE Software MSE Hardware MSE

Source 1 0.005509 0.00048556 0.0027251

Source 2 0.0055224 3.0565× 10−08 0.0054948

Table B.5: JADE Hardware Verification #1 MSE
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Figure B.6: JADE Hardware Verification #2

Software vs Hardware MSE Software MSE Hardware MSE

Source 1 0.05921 0.024183 0.0077702

Source 2 0.05929 0.032557 0.0040586

Table B.6: JADE Hardware Verification #2 MSE
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Figure B.7: JADE Hardware Verification #3

Software vs Hardware MSE Software MSE Hardware MSE

Source 1 9.15× 10−05 0.016062 0.0003469

Source 2 9.1629× 10−05 0.018567 8.1973× 10−05

Table B.7: JADE Hardware Verification #3 MSE
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Figure B.8: JADE Hardware Verification #4

Software vs Hardware MSE Software MSE Hardware MSE

Source 1 0.0031297 0.0031885 2.9628× 10−07

Source 2 0.0031253 0.00052936 0.0062181

Table B.8: JADE Hardware Verification #4 MSE
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APPENDIX C

1 Hardware Block Diagrams

Figure C.1: A 2× 2 matrix multiplier

Figure C.2: A 2× 2 matrix rotation/transformation module
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Figure C.3: A 2× 2 double matrix rotation module
(S1 × A× S2)

Figure C.4: Second order cumlants calculator.

Figure C.5: Fourth order cumlants calculator.
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Figure C.6: Calculated expected value of two signals. Used in
the cumulant calculations

Figure C.7: Calculated expected value of four signals. Used in
calculating Fourth order cumulants
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Figure C.8: FastICA Algorithm Block Diagram
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Figure C.9: Non-Linear function calculator for FastICA

Figure C.10: Whitener for 2-signal
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Figure C.11: Whitener for 4-signal case
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Figure C.12: On-Diagonal processor for systolic array
Whitener
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Figure C.13: Off-Diagonal processor for systolic array
Whitener
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Figure C.14: 2-Signal JADE algorithm block diagram.

Figure C.15: 4-Signal JADE algorithm block diagram.
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Figure C.16: On-Diagonal processor for systolic JADE
algorithm.
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Figure C.17: Off-Diagonal processor for systolic JADE
algorithm.
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2 Systolic Array Matrix Multipliers

The following several diagrams depict the systolic array multiplier

through the first time iterations.

Figure C.18: Systolic Array Multiplier (time = 1)
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Figure C.19: Systolic Array Multiplier (time = 2)
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Figure C.20: Systolic Array Multiplier (time = 3)
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Figure C.21: Systolic Array Multiplier (time = 7)
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APPENDIX D

1 Source Code for Transformer
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−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−− Company: LeTourneau University Electrical and Computer

−−    Engineering Department

−− Engineer: Timothy S. Hong

−− Target VHDL Version: IEEE STD 1076−2008

−− 

−− Create Date: Jul 14, 2015

−− Design Name: Transformer

−− Project Name: Support Library

−− Target Devices: Artix 7

−− Module Description: Performs 2x2 x 2xn matrix

−−    multiplication

−−

−− Version: 2.0 − Added components, entities, and connected

−−    them all

−− Version: 1.0 − File Created

−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

library ieee;

use ieee.std_logic_1164.all;

use ieee.numeric_std.all;

library xil_defaultlib;

use xil_defaultlib.custom.all;

entity transformer is

port(

        aclk : in std_logic; −− System Clock (or Virtual)

        inA, inB : in ctrl_in; −− our input data streams

        w, x, y, z : in ctrl_in; −− input matrix weights

        outA, outB : out ctrl_out −− output data streams

);

end transformer;

architecture action of transformer is

signal v_wa, v_xb, v_ya, v_zb : ctrl_out;

COMPONENT multiplier

  PORT (

    aclk : IN STD_LOGIC;

    s_axis_a_tvalid : IN STD_LOGIC;



    s_axis_a_tvalid : IN STD_LOGIC;

    s_axis_a_tdata : IN STD_LOGIC_VECTOR(31 DOWNTO 0);

    s_axis_b_tvalid : IN STD_LOGIC;

    s_axis_b_tdata : IN STD_LOGIC_VECTOR(31 DOWNTO 0);

    m_axis_result_tvalid : OUT STD_LOGIC;

    m_axis_result_tdata : OUT STD_LOGIC_VECTOR(31 DOWNTO 0)

  );

END COMPONENT;

COMPONENT adder

  PORT (

    aclk : IN STD_LOGIC;

    s_axis_a_tvalid : IN STD_LOGIC;

    s_axis_a_tdata : IN STD_LOGIC_VECTOR(31 DOWNTO 0);

    s_axis_b_tvalid : IN STD_LOGIC;

    s_axis_b_tdata : IN STD_LOGIC_VECTOR(31 DOWNTO 0);

    m_axis_result_tvalid : OUT STD_LOGIC;

    m_axis_result_tdata : OUT STD_LOGIC_VECTOR(31 DOWNTO 0)

  );

END COMPONENT;

begin

wa : multiplier

  PORT MAP (

    aclk => aclk,

    s_axis_a_tvalid => w.tvalid,

    s_axis_a_tdata => w.tdata,

    s_axis_b_tvalid => inA.tvalid,

    s_axis_b_tdata => inA.tdata,

    m_axis_result_tvalid => v_wa.tvalid,

    m_axis_result_tdata => v_wa.tdata

  );

xb : multiplier

  PORT MAP (

    aclk => aclk,

    s_axis_a_tvalid => x.tvalid,

    s_axis_a_tdata => x.tdata,

    s_axis_b_tvalid => inB.tvalid,

    s_axis_b_tdata => inB.tdata,

    m_axis_result_tvalid => v_xb.tvalid,

    m_axis_result_tdata => v_xb.tdata

  );



  );

ya : multiplier

  PORT MAP (

    aclk => aclk,

    s_axis_a_tvalid => y.tvalid,

    s_axis_a_tdata => y.tdata,

    s_axis_b_tvalid => inA.tvalid,

    s_axis_b_tdata => inA.tdata,

    m_axis_result_tvalid => v_ya.tvalid,

    m_axis_result_tdata => v_ya.tdata

  );

zb : multiplier

  PORT MAP (

    aclk => aclk,

    s_axis_a_tvalid => z.tvalid,

    s_axis_a_tdata => z.tdata,

    s_axis_b_tvalid => inB.tvalid,

    s_axis_b_tdata => inB.tdata,

    m_axis_result_tvalid => v_zb.tvalid,

    m_axis_result_tdata => v_zb.tdata

  );

addA : adder

  PORT MAP (

    aclk => aclk,

    s_axis_a_tvalid => v_wa.tvalid,

    s_axis_a_tdata => v_wa.tdata,

    s_axis_b_tvalid => v_xb.tvalid,

    s_axis_b_tdata => v_xb.tdata,

    m_axis_result_tvalid => outA.tvalid,

    m_axis_result_tdata => outA.tdata

  );

addB : adder

  PORT MAP (

    aclk => aclk,

    s_axis_a_tvalid => v_ya.tvalid,

    s_axis_a_tdata => v_ya.tdata,

    s_axis_b_tvalid => v_zb.tvalid,

    s_axis_b_tdata => v_zb.tdata,

    m_axis_result_tvalid => outB.tvalid,

    m_axis_result_tdata => outB.tdata



    m_axis_result_tdata => outB.tdata

  );

end action;



2 Source Code for ADC
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−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−− Company: LeTourneau University Electrical and Computer

−−    Engineering Department

−− Engineer: Timothy S. Hong

−− Target VHDL Version: IEEE STD 1076−2008

−− 

−− Create Date: Jun 16, 2015

−− Design Name: ADC

−− Project Name: Support Library

−− Target Devices: Artix 7

−− Module Description: Receives input from PMOD 12−bit ADC

−−    and outputs 12−bit vectors

−−

−− Revision: 1.1 − Used old module and updated the port types

−−    to clean up overall code

−− Revision: 1.0 − File Created and basic functionality

−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

library ieee;

use ieee.std_logic_1164.all;

use ieee.numeric_std.all;

library xil_defaultlib;

use xil_defaultlib.custom.all;

entity adc is

port(clk : in std_logic; −− System Clock (or Virtual)

       output : out DATAPAIR; −− Output to parent module

       data : in ADC_DATA; −− Incoming data from peripheral

       control : out ADC_CONTROL; −− Control signals for

                                  −−   peripheral

       busy : out std_logic; −− Module Status Bit [aH]

       run : in std_logic −− Module Control Bit [aL]

);

end adc;

architecture pull of adc is

signal activate : std_logic; −− Internal Control Signal for

                               −−  Persistent Operation [aL]

    signal outBuff, outTemp : DATAPAIR; −− for latching output

begin



begin

control.sck <= clk; −− Driven by System Clock

busy <= not activate; −− Status is driven by the internal signal

                      −−  ’activate’

outTemp <= outBuff when (activate = ’1’) else outTemp; −− latch

output <= outTemp;

sample : process(clk, run, activate)

variable counter: integer range −1 to 16 := −1;

begin

if rising_edge(clk) then −− run on rising edge

        if activate = ’0’ then

            counter := counter + 1;

            control.cs <= ’0’; −− Activate the ADC peripheral

            

            if(counter < 4) then

                −− don’t do anything

            elsif(counter < 16) then

                outBuff.A(15−counter) <= data.A; −− Clock in

                                                 −−  data bit

                outBuff.B(15−counter) <= data.B; −− Clock in

                                                 −−  data bit

            elsif(counter = 16) then

                counter := −1; −− Reset Counter

                activate <= ’1’; −− Internal module signal to

                                 −−  return to poll state

            end if;

        else −− if activate = ’1’

            control.cs <= ’1’;

            

            if run = ’0’ then −− Check for trigger run

                activate <= ’0’; −− run ADC

                counter := −1;

            else

                activate <= ’1’; −− persist disable ADC

            end if;

        end if;

end if; −− End if rising_edge(clk)

end process; −− END sample

end pull;
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−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−− Company: LeTourneau University Electrical and Computer

−−    Engineering Department

−− Engineer: Timothy S. Hong

−− Target VHDL Version: IEEE STD 1076−2008

−− 

−− Create Date: Jun 16, 2015

−− Design Name: DAC

−− Project Name: Support Library

−− Target Devices: Artix 7

−− Module Description: Receives 12−bit vectors and writes them

−−    to DAC

−−

−− Revision: 1.1 − Used old module and updated the port types

−−    to clean up overall code

−− Revision: 1.0 − File Created

−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

library ieee;

use ieee.std_logic_1164.all;

use ieee.numeric_std.all;

library xil_defaultlib;

use xil_defaultlib.custom.all;

entity dac is

port(clk : in std_logic; −− System Clock (or Virtual)

       input : in DATAPAIR; −− Incoming data fram parent

                            −−  module

       data : out DAC_DATA; −− Output data to peripheral

       control : out DAC_CONTROL; −− Control signals for

                                  −−  peripheral

       

       busy : out std_logic; −− Module Status Bit [aH]

       run : in std_logic −− Module Control Bit [aL]

);

end dac;

architecture push of dac is

    signal activate : std_logic; −− Internal Control Signal

                                 −−  for Persistent

                                 −−  Operation [aL]



                                 −−  Operation [aL]

    signal inBuff : DATAPAIR;

begin

control.sck <= clk; −− Drive with system clock

−− Should work because activate is switched to ’1’ at least

−−  one clock cycle every run

inBuff.A <= input.A when(activate = ’1’)

        else inBuff.A; −− Latch inputs

inBuff.B <= input.B when(activate = ’1’)

        else inBuff.B; −− (this ensures the data doesn’t

                       −−  change while running)

busy <= not activate; −− Status is driven by the internal

                      −−  signal ’activate’

output : process(clk, run, activate)

variable counter : integer range −1 to 16 := −1;

begin

if rising_edge(clk) then

        if activate = ’0’ then

            counter := counter + 1;

            

            if(counter = 0) then

                control.sync <= ’0’; −− Trigger DAC output

                                     −−  operation

            elsif(counter < 4) then −− Zero Bits + Mode

                                    −−  Config Bits

                data.A <= ’0’;

                data.B <= ’0’;

            elsif(counter < 16) then

                data.A <= inBuff.A(15−counter);

                data.B <= inBuff.B(15−counter);

            elsif(counter = 16) then

                counter := −1; −− reset counter

                

                activate <= ’1’; −− Internal module signal

                                 −−  to return to poll state

            end if;

        else −− if activate = ’1’

            control.sync <= ’1’;

            

            if run = ’0’ then



            if run = ’0’ then

                activate <= ’0’;

                counter := −1;

            else

                activate <= ’1’; −− Persistent Disable

            end if;

        end if;

end if; −− End if rising_edge(clk)

end process; −− END output

end push;
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